Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Pathog ; 20(3): e1012060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442126

RESUMO

The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Camundongos , Animais , Humanos , Roedores , Vírus da Hepatite B/genética , Serpentes , Replicação Viral , RNA Viral/genética
2.
J Hepatol ; 74(4): 893-906, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197513

RESUMO

BACKGROUND & AIMS: The tumour microenvironment shapes tumour growth through cellular communications that include both direct interactions and secreted factors. The aim of this study was to characterize the impact of the secreted glycoprotein ADAMTSL5, whose role in cancer has not been previously investigated, on hepatocellular carcinoma (HCC). METHODS: ADAMTSL5 methylation status was evaluated through bisulfite sequencing, and publicly available data analysis. ADAMTSL5 RNA and protein expression were assessed in mouse models and HCC patient samples and compared to data from published datasets. Functional studies, including association of ADAMTSL5 depletion with responsiveness to clinically relevant drugs, were performed in cellular and in vivo models. Molecular alterations associated with ADAMTSL5 targeting were determined using proteomics, biochemistry, and reverse-transcription quantitative PCR. RESULTS: Methylome analysis revealed hypermethylated gene body CpG islands at the ADAMTSL5 locus in both mouse and human HCC, correlating with higher ADAMTSL5 expression. ADAMTSL5 targeting interfered with tumorigenic properties of HCC cells in vitro and in vivo, whereas ADAMTSL5 overexpression conferred tumorigenicity to pre-tumoural hepatocytes sensitized to transformation by a modest level of MET receptor expression. Mechanistically, ADAMTSL5 abrogation led to a reduction of several oncogenic inputs relevant to HCC, including reduced expression and/or phosphorylation levels of receptor tyrosine kinases MET, EGFR, PDGFRß, IGF1Rß, or FGFR4. This phenotype was associated with significantly increased sensitivity of HCC cells to clinically relevant drugs, namely sorafenib, lenvatinib, and regorafenib. Moreover, ADAMTSL5 depletion drastically increased expression of AXL, accompanied by a sensitization to bemcentinib. CONCLUSIONS: Our results point to a role for ADAMTSL5 in maintaining the function of key oncogenic signalling pathways, suggesting that it may act as a master regulator of tumorigenicity and drug resistance in HCC. LAY SUMMARY: The environment of cancer cells has profound effects on establishment, progression, and response of a tumour to treatment. Herein, we show that ADAMTSL5, a protein secreted by liver cancer cells and overlooked in cancer so far, is increased in this tumour type, is necessary for tumour formation and supports drug resistance. Adamtsl5 removal conferred sensitivity of liver cancer cells to drugs used in current treatment. This suggests ADAMTSL5 as a potential marker in liver cancer as well as a possible drug target.


Assuntos
Proteínas ADAMTS , Proteína ADAMTS5 , Carcinogênese , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Hepáticas , Transdução de Sinais , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Benzocicloeptenos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Sorafenibe/farmacologia , Ativação Transcricional , Triazóis/farmacologia , Microambiente Tumoral/fisiologia
3.
J Virol ; 90(13): 6022-6035, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099311

RESUMO

UNLABELLED: Hepatitis C virus (HCV) triggers innate immunity signaling in the infected cell. Replication of the viral genome is dispensable for this phenotype, and we along with others have recently shown that NS5B, the viral RNA-dependent RNA polymerase, synthesizes double-stranded RNA (dsRNA) from cellular templates, thus eliciting an inflammatory response, notably via activation of type I interferon and lymphotoxin ß. Here, we investigated intracellular signal transduction pathways involved in this process. Using HepaRG cells, a model that largely recapitulates the in vivo complexities of the innate immunity receptor signaling, we have confirmed that NS5B triggered increased expression of the canonical pattern recognition receptors (PRRs) specific for dsRNA, namely, RIG-I, MDA5, and Toll-like receptor 3 (TLR3). Unexpectedly, intracellular dsRNA also led to accumulation of NOD1, a receptor classically involved in recognition of bacterial peptidoglycans. NOD1 activation, confirmed by analysis of its downstream targets, was likely due to its interaction with dsRNA and was independent of RIG-I and mitochondrial antiviral signaling protein (MAVS/IPS-1/Cardif/VISA) signaling. It is likely to have a functional significance in the cellular response in the context of HCV infection since interference with the NOD1 pathway severely reduced the inflammatory response elicited by NS5B. IMPORTANCE: In this study, we show that NOD1, a PRR that normally senses bacterial peptidoglycans, is activated by HCV viral polymerase, probably through an interaction with dsRNA, suggesting that NOD1 acts as an RNA ligand recognition receptor. In consequence, interference with NOD1-mediated signaling significantly weakens the inflammatory response to dsRNA. These results add a new level of complexity to the understanding of the cross talk between different classes of pattern recognition receptors and may be related to certain complications of chronic hepatitis C virus infection.


Assuntos
Hepacivirus/imunologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatócitos/virologia , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , RNA de Cadeia Dupla/imunologia , RNA Polimerase Dependente de RNA/genética , Receptores Imunológicos , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Proteínas não Estruturais Virais/genética
4.
Development ; 140(10): 2130-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633510

RESUMO

Limb development relies on an exquisite coordination between growth and patterning, but the underlying mechanisms remain elusive. Anterior-posterior and proximal-distal specification initiates in early limb bud concomitantly with the proliferative expansion of limb cells. Previous studies have shown that limb bud growth initially relies on fibroblast growth factors (FGFs) produced in the apical ectodermal ridge (AER-FGFs), the maintenance of which relies on a positive-feedback loop involving sonic hedgehog (Shh) and the BMP antagonist gremlin 1 (Grem1). The positive cross-regulation between Shh and the HoxA and HoxD clustered genes identified an indirect effect of Hox genes on the maintenance of AER-FGFs but the respective function of Shh and Hox genes in this process remains unknown. Here, by uncoupling Hox and Shh function, we show that HoxA and HoxD genes are required for proper AER-FGFs expression, independently of their function in controlling Shh expression. In addition, we provide evidence that the Hox-dependent control of AER-FGF expression is achieved through the regulation of key mesenchymal signals, namely Grem1 and Fgf10, ensuring proper epithelial-mesenchymal interactions. Notably, HoxA and HoxD genes contribute to both the initial activation of Grem1 and the subsequent anterior expansion of its expression domain. We propose that the intricate interactions between Hox genes and the FGF and Shh signaling pathways act as a molecular network that ensures proper limb bud growth and patterning, probably contributing to the coordination of these two processes.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Alelos , Animais , Regulação para Baixo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Família Multigênica , Mutação , Proteínas do Tecido Nervoso/metabolismo , Tomografia , Proteína Gli3 com Dedos de Zinco
5.
PLoS Pathog ; 9(3): e1003234, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555249

RESUMO

Exposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis. The goal of our work was to investigate the initiation of the inflammatory processes triggered by HCV viral proteins in their host cell and their possible link with HCV-related liver cancer. We report a dramatic upregulation of the lymphotoxin signaling pathway and more specifically of lymphotoxin-ß in tumors of the FL-N/35 HCV-transgenic mice. Lymphotoxin expression is accompanied by activation of NF-κB, neosynthesis of chemokines and intra-tumoral recruitment of mononuclear cells. Spectacularly, IKKß inactivation in FL-N/35 mice drastically reduces tumor incidence. Activation of lymphotoxin-ß pathway can be reproduced in several cellular models, including the full length replicon and HCV-infected primary human hepatocytes. We have identified NS5B, the HCV RNA dependent RNA polymerase, as the viral protein responsible for this phenotype and shown that pharmacological inhibition of its activity alleviates activation of the pro-inflammatory pathway. These results open new perspectives in understanding the inflammatory mechanisms linked to HCV infection and tumorigenesis.


Assuntos
Hepacivirus/enzimologia , Neoplasias Hepáticas/metabolismo , Linfócitos/imunologia , Linfotoxina-beta/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Animais , Linhagem Celular , Quimiocinas/metabolismo , Quimiotaxia de Leucócito , Hepacivirus/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Quinase I-kappa B/metabolismo , Imunidade Inata , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Ativação Linfocitária , Linfócitos/virologia , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Transdução de Sinais , Regulação para Cima , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo
6.
Contemp Oncol (Pozn) ; 19(1A): A62-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25691824

RESUMO

Viruses are considered as causative agents of a significant proportion of human cancers. While the very stringent criteria used for their classification probably lead to an underestimation, only six human viruses are currently classified as oncogenic. In this review we give a brief historical account of the discovery of oncogenic viruses and then analyse the mechanisms underlying the infectious causes of cancer. We discuss viral strategies that evolved to ensure virus propagation and spread can alter cellular homeostasis in a way that increases the probability of oncogenic transformation and acquisition of stem cell phenotype. We argue that a useful way of analysing the convergent characteristics of viral infection and cancer is to examine how viruses affect the so-called cancer hallmarks. This view of infectious origin of cancer is illustrated by examples from hepatitis C infection, which is associated with a high proportion of hepatocellular carcinoma.

7.
Methods Mol Biol ; 2769: 77-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315390

RESUMO

Hydrodynamic tail vein injection (HTVi), also called hydrodynamic gene transfer (HGT), is attracting increasing interest for modeling hepatic carcinogenesis. This highly versatile approach reproducibly provides efficient in vivo transfection of hepatocytes with naked DNA. Here, we give an in-depth description of the injection procedure, which is key for the success of the method. HTVi requires the injection of a large volume of a solution containing plasmids into the tail vein of the mouse. The transient right heart overload created by the injection forces the blood to flow back into the hepatic veins, enlarging the endothelial fenestrae and permeabilizing a fraction of hepatocytes for a few seconds. This results in the uptake of plasmids by the permeabilized hepatocytes, giving rise to their in vivo transfection. Including the Sleeping Beauty transposon system among the injected plasmids leads to the stable transfection of a subset of hepatocytes. HTVi is a powerful technique which enables numerous applications in liver cancer biology, such as a study of oncogene cooperation, of tumor heterogeneity, and interaction with the tumor microenvironment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Hidrodinâmica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hepatócitos , Fígado/patologia , Transfecção , Plasmídeos/genética , Carcinogênese/patologia , Microambiente Tumoral
8.
EMBO Mol Med ; 16(2): 238-250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228803

RESUMO

FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios
9.
Methods ; 57(2): 158-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22796403

RESUMO

Understanding the nature of DNA replication origins in metazoan is quite challenging. In the absence of a genetic assay like in yeast, methods were devised based on the DNA structure, the visualization or quantification of the first nascent strands that are synthesized at origins, or on the localization of origin binding proteins. The purification and quantification of RNA-primed nascent DNA at origins during initiation of DNA synthesis is the most exhaustive and precise method to map active replication origins at present. We have upgraded this method to the level of reproducibility and enrichment required for genome-wide analyses by microarrays or deep sequencing. We detail here the protocol and the controls required at the different steps.


Assuntos
Replicação do DNA , DNA/biossíntese , Origem de Replicação , Animais , Técnicas de Cultura de Células , Células Cultivadas , DNA/química , DNA/isolamento & purificação , Clivagem do DNA , Exodesoxirribonucleases/química , Loci Gênicos , Genoma , Proteínas de Homeodomínio/genética , Humanos , Extração Líquido-Líquido , Análise de Sequência com Séries de Oligonucleotídeos , Clivagem do RNA , Reação em Cadeia da Polimerase em Tempo Real , Ribonuclease Pancreático/química
10.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656749

RESUMO

Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK (natural killer) cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Células Matadoras Naturais , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Microambiente Tumoral , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA