Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 17(12): 1192-203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946419

RESUMO

The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/química , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Zea mays/efeitos dos fármacos , Biodegradação Ambiental , Georgia , Panicum/efeitos dos fármacos , Panicum/metabolismo , Espectrofotometria Atômica , Zea mays/metabolismo
2.
Plants (Basel) ; 11(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35448740

RESUMO

Soil lead (Pb) contamination is a recognized environmental and global health problem. Phytoextraction of Pb using switchgrass (Panicum virgatum L.), a second-generation biofuel crop, is typically enhanced by soil chelation. The effectiveness of four different chelating agents, phytic acid (inositol hexaphosphate), citric acid, NTA (nitrilotriacetic acid), and EDTA (ethylenediaminetetraacetic acid) was examined in pot culture. Plants treated with EDTA (1 mM) showed significantly higher shoot Pb concentrations compared to control plants and plants treated with other chelates. Lead-solubility following phytoextraction was examined by soil washing using 0.01 and 0.05 M acetic acid as an extractant solution revealed no significant differences in Pb concentrations in soil among different chelate treatments and control. Furthermore, the effects of different concentrations (1, 2, 5 and 10 mM) of NTA on Pb phytoextraction of switchgrass were examined. Plants receiving 5 mM and 10 mM NTA had significantly higher foliage concentrations of Pb compared to plants treated with lower levels (1 and 2 mM) of NTA. Moreover, the effect of NTA application alone was significantly improved by a combined application of Triton X-100, an alkyl polyglucoside (APG); the Pb concentration in the foliage of switchgrass was more than doubled when treated with NTA combined with APG. The use of NTA combined with APG has great potential in improving phytoextraction efficiencies of switchgrass on Pb-contaminated soils.

3.
Chemosphere ; 175: 85-96, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28211339

RESUMO

Lead (Pb) contamination in soil represents a threat to human health. Phytoextraction has gained attention as a potential alternative to traditional remediation methods because of lower cost and minimal soil disruption. The North American native switchgrass (Panicum virgatum L.) was targeted due to its ability to produce high biomass and grow across a variety of ecozones. In this study switchgrass was chemically enhanced with applications of the soil-fungicide benomyl, chelates (EDTA and citric acid), and PGR to optimize phytoextraction of Pb and zinc (Zn) from contaminated urban soils in Atlanta, GA. Exogenous application of two plant hormones was compared in multiple concentrations to determine effects on switchgrass growth: indole-3-acetic acid (IAA), and Gibberellic Acid (GA3), and one PGR benzylaminopurine (BAP), The PGR BAP (1.0 µM) was found to generate a 48% increase in biomass compared to Control plants. Chemical application of citric acid, EDTA, benomyl, and BAP were tested separately and in combination in a pot experiment in an environmentally controlled greenhouse to determine the efficacy of phtyoextraction by switchgrass. Soil acidification by citric acid application resulted in highest level of aluminum (Al) and iron (Fe) in plants foliage resulting in severe phytotoxic effects. Total Pb phytoextraction was significantly highest in plants treated with combined chemical application of B + C and B + C + H. Suppression of AMF activities by benomyl application significantly increased concentrations of Al and Fe in roots. Application of benomyl reduced AMF colonization but was also shown to dramatically increase levels of septa fungi infection as compared to Control plants.


Assuntos
Biodegradação Ambiental , Panicum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Biomassa , Ácido Cítrico/farmacologia , Giberelinas/farmacologia , Ácidos Indolacéticos/farmacologia , Chumbo/análise , Chumbo/farmacocinética , Metais Pesados/análise , Metais Pesados/farmacocinética , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética
4.
Int J Phytoremediation ; 14(7): 703-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22908638

RESUMO

The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4.


Assuntos
Benomilo/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Ácido Edético/farmacologia , Chumbo/metabolismo , Lolium/metabolismo , Poluentes do Solo/metabolismo , Chumbo/química , Lolium/efeitos dos fármacos , Micorrizas , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA