Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Drug Metab Dispos ; 43(6): 836-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25802327

RESUMO

In pregnant women, CYP3A activity increases by 100% during the third trimester (T3). Due to logistical and ethical constraints, little is known about the magnitude of CYP3A induction during the first trimester (T1) and second trimester (T2). Our laboratory has shown that sandwich-cultured human hepatocytes (SCHH) and HepaRG cells have the potential to predict the magnitude of in vivo induction of CYP3A activity likely to be observed in T1 and T2. Therefore, we incubated SCHH and HepaRG cells with plasma concentrations of various pregnancy-related hormones (PRHs)-individually or in combination-observed during T1, T2, or T3 in pregnant women. Then, CYP3A activity was measured by 1'-OH-midazolam formation. In all three trimesters, only cortisol (C) consistently and significantly induced CYP3A activity, while other individual hormones (progesterone, estradiol, or growth hormones) failed to induce CYP3A activity. At physiologically relevant 1× plasma concentrations, the magnitude of CYP3A induction by C or the combination of all PRHs did not change significantly with gestational age. The pattern of induction of CYP3A activity in SCHH by the hormones was similar to that in HepaRG cells. Based on these data, we conclude that C remains the major inducer of CYP3A activity earlier in gestation. Moreover, we predict that the magnitude of CYP3A induction during T1 and T2 will be similar to that observed during T3 (∼100% increase versus postpartum). This prediction is consistent with the observation of similar increases in T2 and T3 oral clearance of indinavir (a CYP3A cleared drug) versus postpartum.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Indução Enzimática , Hepatócitos/enzimologia , Hidrocortisona/metabolismo , Modelos Biológicos , Gravidez/fisiologia , Adolescente , Adulto , Linhagem Celular , Células Cultivadas , Citocromo P-450 CYP3A/genética , Estradiol/sangue , Estradiol/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Hormônio do Crescimento Humano/sangue , Hormônio do Crescimento Humano/metabolismo , Humanos , Hidrocortisona/sangue , Concentração Osmolar , Gravidez/sangue , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Progesterona/sangue , Progesterona/metabolismo
2.
Sci Rep ; 11(1): 22765, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815444

RESUMO

Non-alcoholic steatohepatitis (NASH) is a progressive and severe liver disease, characterized by lipid accumulation, inflammation, and downstream fibrosis. Despite its increasing prevalence, there is no approved treatment yet available for patients. This has been at least partially due to the lack of predictive preclinical models for studying this complex disease. Here, we present a 3D in vitro microtissue model that uses spheroidal, scaffold free co-culture of primary human hepatocytes, Kupffer cells, liver endothelial cells and hepatic stellate cells. Upon exposure to defined and clinically relevant lipotoxic and inflammatory stimuli, these microtissues develop key pathophysiological features of NASH within 10 days, including an increase of intracellular triglyceride content and lipids, and release of pro-inflammatory cytokines. Furthermore, fibrosis was evident through release of procollagen type I, and increased deposition of extracellular collagen fibers. Whole transcriptome analysis revealed changes in the regulation of pathways associated with NASH, such as lipid metabolism, inflammation and collagen processing. Importantly, treatment with anti-NASH drug candidates (Selonsertib and Firsocostat) decreased the measured specific disease parameter, in accordance with clinical observations. These drug treatments also significantly changed the gene expression patterns of the microtissues, thus providing mechanisms of action and revealing therapeutic potential. In summary, this human NASH model represents a promising drug discovery tool for understanding the underlying complex mechanisms in NASH, evaluating efficacy of anti-NASH drug candidates and identifying new approaches for therapeutic interventions.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Técnicas In Vitro , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA