Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 409(1): 234-250, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26477561

RESUMO

Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the changes in cell shape/volume in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib, we performed ChIP-seq analysis in embryos driving expression of GFP-tagged Rib specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites bound by Rib likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell growth and tissue shape in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that autoregulation of rib expression may be a key component of the SG morphogenetic gene network.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Morfogênese/genética , Proteínas Repressoras/metabolismo , Glândulas Salivares/embriologia , Ativação Transcricional/genética , Animais , Apoptose/genética , Sequência de Bases , Sítios de Ligação , Divisão Celular/genética , Polaridade Celular/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Sequência Consenso , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Motivos de Nucleotídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Ligação Proteica , Reprodutibilidade dos Testes , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Análise de Sequência de RNA
2.
J Cell Biol ; 163(6): 1267-79, 2003 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-14676307

RESUMO

The proto-oncogenic kinase Abelson (Abl) regulates actin in response to cell signaling. Drosophila Abl is required in the nervous system, and also in epithelial cells, where it regulates adherens junction stability and actin organization. Abl acts at least in part via the actin regulator Enabled (Ena), but the mechanism by which Abl regulates Ena is unknown. We describe a novel role for Abl in early Drosophila development, where it regulates the site and type of actin structures produced. In Abl's absence, excess actin is polymerized in apical microvilli, whereas too little actin is assembled into pseudocleavage and cellularization furrows. These effects involve Ena misregulation. In abl mutants, Ena accumulates ectopically at the apical cortex where excess actin is observed, suggesting that Abl regulates Ena's subcellular localization. We also examined other actin regulators. Loss of Abl leads to changes in the localization of the Arp2/3 complex and the formin Diaphanous, and mutations in diaphanous or capping protein beta enhance abl phenotypes.


Assuntos
Actinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Fatores de Despolimerização de Actina , Proteína 2 Relacionada a Actina , Actinas/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Destrina , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Forminas , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mutação/genética , Fenótipo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-abl/genética
3.
Curr Biol ; 13(14): R568-70, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12867052

RESUMO

Cell and tissue integrity requires the coordination of actin and microtubules and the linkage of these cytoskeletal elements to cell junctions. New findings reveal that the cytoskeletal linker protein Short stop works with EB1 and APC1 to help carry out this function.


Assuntos
Citoesqueleto/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Citoesqueleto/metabolismo , Drosophila , Junções Intercelulares/fisiologia , Microtúbulos/metabolismo , Modelos Biológicos
4.
PLoS One ; 6(6): e20901, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698206

RESUMO

Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis.


Assuntos
Linhagem da Célula/genética , Drosophila/genética , Estudo de Associação Genômica Ampla , Fator 3-alfa Nuclear de Hepatócito/genética , Animais , Hibridização In Situ , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo
5.
Dev Biol ; 250(1): 91-100, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12297098

RESUMO

The regulation of signal transduction plays a key role in cell fate choices, and its disregulation contributes to oncogenesis. This duality is exemplified by the tumor suppressor APC. Originally identified for its role in colon tumors, APC family members were subsequently shown to negatively regulate Wnt signaling in both development and disease. The analysis of the normal roles of APC proteins is complicated by the presence of two APC family members in flies and mice. Previous work demonstrated that, in some tissues, single mutations in each gene have no effect, raising the question of whether there is functional overlap between the two APCs or whether APC-independent mechanisms of Wnt regulation exist. We addressed this by eliminating the function of both Drosophila APC genes simultaneously. We find that APC1 and APC2 play overlapping roles in regulating Wingless signaling in the embryonic epidermis and the imaginal discs. Surprisingly, APC1 function in embryos occurs at levels of expression nearly too low to detect. Further, the overlapping functions exist despite striking differences in the intracellular localization of the two APC family members.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteína da Polipose Adenomatosa do Colo , Animais , Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Expressão Gênica , Líquido Intracelular , Transativadores/metabolismo , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA