Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virus Res ; 346: 199401, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796132

RESUMO

The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.


Assuntos
RNA Helicases , Proteínas não Estruturais Virais , Replicação Viral , RNA Helicases/metabolismo , RNA Helicases/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , Coronavirus/enzimologia , Coronavirus/genética , Coronavirus/fisiologia , Animais , Antivirais/farmacologia , Metiltransferases
2.
bioRxiv ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39386528

RESUMO

Coronaviruses (CoVs) encode nonstructural proteins (nsps) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease (ExoN) in nsp14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The in vitro enzymatic activity of nsp14 ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-10 interface and recovered mutant viruses with a range of impairments in replication and in vitro biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between WT-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-10 interface alanine substitutions impaired in vitro exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-10 interface for viral inhibition and attenuation. IMPORTANCE: Coronavirus replication requires assembly of a replication transcription complex composed of nonstructural proteins (nsp), including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity in vitro requires the non-enzymatic co-factor nsp10, but the determinants and importance the nsp14-10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-10 interface are essential for efficient viral replication and in vitro exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non active-site targets for virus inhibition and attenuation.

3.
mBio ; 14(4): e0106023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37338298

RESUMO

Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , Camundongos , Humanos , Nucleosídeos/farmacologia , Vacinas contra COVID-19 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Replicação Viral/genética , Tratamento Farmacológico da COVID-19 , Mutação , Vírus da Hepatite Murina/genética , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo , RNA , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA