Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
EMBO J ; 42(18): e111620, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37545364

RESUMO

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Cell ; 147(2): 293-305, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000010

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD.


Assuntos
Modelos Animais de Doenças , Pulmão/patologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/patologia , Animais , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Lisina/análogos & derivados , Lisina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia
3.
Am J Physiol Cell Physiol ; 326(6): C1637-C1647, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646782

RESUMO

Bleomycin (BLM)-induced lung injury in mice is a valuable model for investigating the molecular mechanisms that drive inflammation and fibrosis and for evaluating potential therapeutic approaches to treat the disease. Given high variability in the BLM model, it is critical to accurately phenotype the animals in the course of an experiment. In the present study, we aimed to demonstrate the utility of microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation for rapid phenotyping of BLM mice. µCT was performed in freely breathing C57BL/6J mice under isoflurane anesthesia on days 7 and 21 after BLM administration. Terminal invasive lung function measurement and histological assessment of the left lung collagen content were conducted as well. µCT image analysis demonstrated gradual and time-dependent development of lung injury as evident by alterations in the lung density, air-to-tissue volume ratio, and lung aeration in mice treated with BLM. The right and left lung were unequally affected. µCT-derived parameters such as lung density, air-to-tissue volume ratio, and nonaerated lung volume correlated well with the invasive lung function measurement and left lung collagen content. Our study demonstrates the utility of AI-CNN-powered µCT image analysis for rapid and accurate phenotyping of BLM mice in the course of disease development and progression.NEW & NOTEWORTHY Microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation is a rapid and powerful tool for noninvasive phenotyping of bleomycin mice over the course of the disease. This, in turn, allows earlier and more reliable identification of therapeutic effects of new drug candidates, ultimately leading to the reduction of unnecessary procedures in animals in pharmacological research.


Assuntos
Bleomicina , Lesão Pulmonar , Pulmão , Camundongos Endogâmicos C57BL , Redes Neurais de Computação , Fenótipo , Animais , Bleomicina/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Microtomografia por Raio-X/métodos , Modelos Animais de Doenças , Inteligência Artificial , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Colágeno/metabolismo
4.
Clin Sci (Lond) ; 138(11): 617-634, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785410

RESUMO

The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.


Assuntos
Endotelinas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Endotelinas/metabolismo , Endotelinas/fisiologia , Animais , Transição Epitelial-Mesenquimal , Transdução de Sinais
5.
Am J Respir Crit Care Med ; 207(12): 1576-1590, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219322

RESUMO

Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Antígenos CD/metabolismo , Antioxidantes , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI/efeitos adversos , Proteínas Ligadas por GPI/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Nicotiana
6.
Circulation ; 145(12): 916-933, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35175782

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-ß1 (transforming growth factor ß1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.


Assuntos
Hipertensão Pulmonar , Animais , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Osteonectina/genética , Artéria Pulmonar , Remodelação Vascular/genética
7.
Eur Respir J ; 62(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884305

RESUMO

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Assuntos
Fumar Cigarros , Enfisema , Hipertensão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Hipertensão Pulmonar/complicações , Elastase Pancreática/efeitos adversos , Elastase Pancreática/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/etiologia , Pulmão/metabolismo , Enfisema/complicações , Camundongos Endogâmicos C57BL
8.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105573

RESUMO

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Animais , Camundongos , Nicotina/efeitos adversos , Vapor do Cigarro Eletrônico/efeitos adversos , Vapor do Cigarro Eletrônico/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pulmão/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
9.
Eur Respir J ; 59(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34475225

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS: To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS: Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION: In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.


Assuntos
Enfisema , Hipertensão Pulmonar , Enfisema Pulmonar , Animais , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/prevenção & controle , Hipóxia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fumaça/efeitos adversos , Nicotiana/metabolismo , Remodelação Vascular
10.
Respir Res ; 23(1): 263, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131349

RESUMO

BACKGROUND: Persistent symptoms after initial COVID-19 infection are common and are frequently referred to by the umbrella terms "post-COVID syndrome" and "long COVID". The sheer number of affected patients pose an increasing challenge to healthcare systems worldwide. To date, our understanding of the pathophysiology of the post-COVID syndrome remains poor and the extent to which persistent cardiopulmonary abnormalities contribute to the symptom complex is unclear. We sought to determine the presence and impact of cardiopulmonary sequelae after COVID-19 in longitudinal assessment. METHODS: We report on 71 patients who underwent comprehensive, longitudinal testing in regular intervals for up to 12 months after their initial COVID-19 diagnosis. Testing included pulmonary function testing, cardiopulmonary exercise testing, dedicated left and right heart echocardiography, lung ultrasonography, and cardiac MRI. RESULTS: Our results demonstrate that subjective quality of life after COVID-19 (EQ-5D visual acuity scale, VAS, 67.4 for patients treated as outpatient, 79.2 for patients admitted to the general floor, 71.8 for patients treated in an ICU) is not related to the severity of the initial infection. Maximal exercise capacity is also reduced (VO2max 79% predicted, SD ± 19%); however, this is driven in large parts by patients who had initially required ICU-level of care. The degree of objective reduction in exertion did not correlate with quality of life scores. Pulmonary function testing revealed mild and persistent reduction in DLCO over the first 12 months without significant restrictive or obstructive lung disease. Left and right heart function was intact with good RV function and intact RV/PA coupling, imaging findings suggestive of myocarditis were uncommon (7% of patients). CONCLUSION: A reduction in exercise capacity after COVID-19 is common, but is most prominent in patients previously treated in the ICU and more likely related to deconditioning or fatigue than to cardiopulmonary impairment. Subjective quality of life scores are independent of the severity of initial infection and do not correlate with objective measures of cardiopulmonary function. In our cohort, persistent cardiopulmonary impairment after COVID-19 was uncommon. The post-COVID syndrome is unlikely to be the result of cardiopulmonary sequalae and may reflect a post-ICU syndrome in some. Trial registration Registered on clinicaltrials.gov (NCT04442789), Date: June 23, 2020.


Assuntos
COVID-19/complicações , Teste de Esforço , Qualidade de Vida , Teste para COVID-19 , Ecocardiografia , Humanos , Síndrome de COVID-19 Pós-Aguda
11.
Respiration ; 101(3): 253-261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34628406

RESUMO

BACKGROUND: The overall incidence of interstitial lung disease and disease-associated mortality have been found on the rise. Hospitalizations for interstitial lung disease are typically caused by airway infection or the acute exacerbation of the underlying disease. Seasonal variance in ambient air pollution has recently been linked to exacerbation and mortality. We sought to examine the seasonal pattern of hospitalizations in Germany, use of mechanical ventilation, and in-hospital mortality on a year-by-year basis to identify their overall trend and to characterize seasonal patterns. METHODS: The national in-patient database of the federal statistical office of Germany was searched for cases of interstitial lung disease. RESULTS: A total of 130,366 hospitalizations for ILD occurred from 2005 to 2015. Time series data were examined for seasonality using X-11 statistics. The incidence of hospitalizations, mechanical ventilation, and in-hospital mortality show clear seasonal peaks in the cold season. The observed seasonality cannot be attributed to the variance of selected comorbidities. Also, there is a significant overall upward trend regarding hospitalization counts, especially in the use of non-invasive ventilation. CONCLUSION: Time series analysis of in-hospital data shows an ILD-related rise of hospitalizations, in-hospital mortality, and non-invasive ventilation. This emphasizes a growing importance of interstitial lung diseases for health-care systems. Strong seasonality is seen in these variables. Data therefore support previous studies of ILD exacerbation. More research on infectious causes and environmental factors is warranted.


Assuntos
Doenças Pulmonares Intersticiais , Progressão da Doença , Mortalidade Hospitalar , Hospitalização , Humanos , Doenças Pulmonares Intersticiais/epidemiologia , Estudos Retrospectivos , Fatores de Risco
12.
Am J Respir Cell Mol Biol ; 64(1): 100-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052714

RESUMO

In pulmonary arterial hypertension (PAH), progressive structural remodeling accounts for the pulmonary vasculopathy including the obliteration of the lung vasculature that causes an increase in vascular resistance and mean blood pressure in the pulmonary arteries ultimately leading to right heart failure-mediated death. Deciphering the molecular details of aberrant signaling of pulmonary vascular cells in PAH is fundamental for the development of new therapeutic strategies. We aimed to identify kinases as new potential drug targets that are dysregulated in PAH by means of a peptide-based kinase activity assay. We performed a tyrosine kinase-dependent phosphorylation assay using 144 selected microarrayed substrate peptides. The differential signature of phosphopeptides was used to predict alterations in tyrosine kinase activities in human pulmonary arterial smooth muscle cells (HPASMCs) from patients with idiopathic PAH (IPAH) compared with healthy control cells. Thereby, we observed an overactivation and an increased expression of Jak2 (Janus kinase 2) in HPASMCs from patients with IPAH as compared with controls. In vitro, IL-6-induced proliferation and migration of HPASMCs from healthy individuals as well as from patients with IPAH were reduced in a dose-dependent manner by the U.S. Food and Drug Administration-approved Jak1 and Jak2 inhibitor ruxolitinib. In vivo, ruxolitinib therapy in two experimental models of pulmonary arterial hypertension dose-dependently attenuated the elevation in pulmonary arterial pressure, partially reduced right ventricular hypertrophy, and almost completely restored cardiac index without signs of adverse events on cardiac function. Therefore, we propose that ruxolitinib may present a novel therapeutic option for patients with PAH by reducing pulmonary vascular remodeling through effectively blocking Jak2-Stat3 (signal transducer of activators of transcription)-mediated signaling pathways.


Assuntos
Hipertensão Pulmonar/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Nitrilas , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Pirazóis/farmacologia , Pirimidinas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia
13.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L903-L915, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760647

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.


Assuntos
Fumar Cigarros , Doxiciclina/farmacologia , Hipertensão Pulmonar , Enfisema Pulmonar , Animais , Fumar Cigarros/tratamento farmacológico , Fumar Cigarros/genética , Fumar Cigarros/metabolismo , Fumar Cigarros/patologia , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Transgênicos , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fatores de Tempo
14.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L715-L725, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33655769

RESUMO

Right ventricular (RV) function determines outcome in pulmonary arterial hypertension (PAH). RV pressure-volume loops, the gold standard for measuring RV function, are difficult to analyze. Our aim was to investigate whether simple assessments of RV pressure-volume loop morphology and RV systolic pressure differential reflect PAH severity and RV function. We analyzed multibeat RV pressure-volume loops (obtained by conductance catheterization with preload reduction) in 77 patients with PAH and 15 patients without pulmonary hypertension in two centers. Patients were categorized according to their pressure-volume loop shape (triangular, quadratic, trapezoid, or notched). RV systolic pressure differential was defined as end-systolic minus beginning-systolic pressure (ESP - BSP), augmentation index as ESP - BSP/pulse pressure, pulmonary arterial capacitance (PAC) as stroke volume/pulse pressure, and RV-arterial coupling as end-systolic/arterial elastance (Ees/Ea). Trapezoid and notched pressure-volume loops were associated with the highest afterload (Ea), augmentation index, pulmonary vascular resistance (PVR), mean pulmonary arterial pressure, stroke work, B-type natriuretic peptide, and the lowest Ees/Ea and PAC. Multivariate linear regression identified Ea, PVR, and stroke work as the main determinants of ESP - BSP. ESP - BSP also significantly correlated with multibeat Ees/Ea (Spearman's ρ: -0.518, P < 0.001). A separate retrospective analysis of 113 patients with PAH showed that ESP - BSP obtained by routine right heart catheterization significantly correlated with a noninvasive surrogate of RV-arterial coupling (tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio; ρ: -0.376, P < 0.001). In conclusion, pressure-volume loop shape and RV systolic pressure differential predominately depend on afterload and PAH severity and reflect RV-arterial coupling in PAH.


Assuntos
Hipertensão Pulmonar/patologia , Volume Sistólico , Sístole , Resistência Vascular , Disfunção Ventricular Direita/complicações , Pressão Ventricular , Pressão Sanguínea , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
15.
Thorax ; 76(2): 201-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33177230

RESUMO

Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID­19. We describe the clinical, radiological and histological findings of patients with COVID­19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID­19 and might partially explain why a subgroup of COVID­19 patients benefits from systemic corticosteroids.


Assuntos
COVID-19/complicações , Pulmão/diagnóstico por imagem , Pneumonia/etiologia , SARS-CoV-2 , Idoso , Biópsia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Tomografia Computadorizada por Raios X
16.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540939

RESUMO

Pulmonary hypertension (PH) is characterized by a progressive elevation of mean arterial pressure followed by right ventricular failure and death. Previous studies have indicated that numerous inhibitors of receptor tyrosine kinase signaling could be either beneficial or detrimental for the treatment of PH. Here we investigated the therapeutic potential of the multi-kinase inhibitor regorafenib (BAY 73-4506) for the treatment of PH. A peptide-based kinase activity assay was performed using the PamStation®12 platform. The 5-bromo-2'-deoxyuridine proliferation and transwell migration assays were utilized in pulmonary arterial smooth muscle cells (PASMCs). Regorafenib was administered to monocrotaline- and hypoxia-induced PH in rats and mice, respectively. Functional parameters were analyzed by hemodynamic and echocardiographic measurements. The kinase activity assay revealed upregulation of twenty-nine kinases in PASMCs from patients with idiopathic PAH (IPAH), of which fifteen were established as potential targets of regorafenib. Regorafenib showed strong anti-proliferative and anti-migratory effects in IPAH-PASMCs compared to the control PASMCs. Both experimental models indicated improved cardiac function and reduced pulmonary vascular remodeling upon regorafenib treatment. In lungs from monocrotaline (MCT) rats, regorafenib reduced the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2. Overall, our data indicated that regorafenib plays a beneficial role in experimental PH.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Monocrotalina/toxicidade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Artéria Pulmonar/citologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos
17.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638712

RESUMO

Increased proliferation of pulmonary arterial smooth muscle cells (PASMCs) in response to chronic hypoxia contributes to pulmonary vascular remodeling in pulmonary hypertension (PH). PH shares numerous similarities with cancer, including a metabolic shift towards glycolysis. In lung cancer, adenylate kinase 4 (AK4) promotes metabolic reprogramming and metastasis. Against this background, we show that AK4 regulates cell proliferation and energy metabolism of primary human PASMCs. We demonstrate that chronic hypoxia upregulates AK4 in PASMCs in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. RNA interference of AK4 decreases the viability and proliferation of PASMCs under both normoxia and chronic hypoxia. AK4 silencing in PASMCs augments mitochondrial respiration and reduces glycolytic metabolism. The observed effects are associated with reduced levels of phosphorylated protein kinase B (Akt) as well as HIF-1α, indicating the existence of an AK4-HIF-1α feedforward loop in hypoxic PASMCs. Finally, we show that AK4 levels are elevated in pulmonary vessels from patients with idiopathic pulmonary arterial hypertension (IPAH), and AK4 silencing decreases glycolytic metabolism of IPAH-PASMCs. We conclude that AK4 is a new metabolic regulator in PASMCs interacting with HIF-1α and Akt signaling pathways to drive the pro-proliferative and glycolytic phenotype of PH.


Assuntos
Adenilato Quinase/metabolismo , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais , Hipóxia Celular , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Glicólise , Humanos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia
18.
Basic Res Cardiol ; 115(2): 17, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980934

RESUMO

AIMS: The cytoskeletal signaling protein four and-a-half LIM domains 1 (FHL-1) has recently been identified as a novel key player in pulmonary hypertension as well as in left heart diseases. In this regard, FHL-1 has been implicated in dysregulated hypertrophic signaling in pulmonary arterial smooth muscle cells leading to pulmonary hypertension. In mice, FHL-1-deficiency (FHL-1-/-) led to an attenuated hypertrophic signaling associated with a blunted hypertrophic response of the pressure-overloaded left ventricle (LV). However, the role of FHL-1 in right heart hypertrophy has not yet been addressed. METHODS AND RESULTS: We investigated FHL-1 expression in C57Bl/6 mice subjected to chronic biomechanical stress and found it to be enhanced in the right ventricle (RV). Next, we subjected FHL-1-/- and corresponding wild-type mice to pressure overload of the RV by pulmonary arterial banding for various time points. However, in contrast to the previously published study in LV-pressure overload, which was confirmed here, RV hypertrophy and hypertrophic signaling was not diminished in FHL-1-/- mice. In detail, right ventricular pressure overload led to hypertrophy, dilatation and fibrosis of the RV from both FHL-1-/- and wild-type mice. RV remodeling was associated with impaired RV function as evidenced by reduced tricuspid annular plane systolic excursion. Additionally, PAB induced upregulation of natriuretic peptides and slight downregulation of phospholamban and ryanodine receptor 2 in the RV. However, there was no difference between genotypes in the degree of expression change. CONCLUSION: FHL-1 pathway is not involved in the control of adverse remodeling in the pressure overloaded RV.


Assuntos
Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Disfunção Ventricular Direita/metabolismo , Função Ventricular Direita , Remodelação Ventricular , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Peptídeos Natriuréticos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
19.
Am J Respir Crit Care Med ; 199(11): 1407-1420, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557519

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Fucoidan, a polysaccharidic ligand of the adhesion molecule P-selectin, exhibits antiproliferative properties. The effects of the fucoidan/P-selectin axis on vascular remodeling and pulmonary hypertension (PH) after hypoxia remain unexplored. Objectives: We aimed to evaluate the therapeutic potential of targeting the fucoidan/P-selectin axis in PH. Methods: Mice with PH induced by chronic hypoxia (35 d) were given either fucoidan (from Fucus vesiculosus) or anti-P-selectin antibody (Rb40.34) during Days 21-35. Right ventricular (RV) function was determined by echocardiography. Vascular morphometry was assessed by immunohistochemistry. Human and experimental PH lungs and PASMCs were used for assessment of P-selectin expression and function. Measurements and Main Results: Fucoidan attenuated chronic hypoxia-induced PH in mice, reducing pulmonary vascular remodeling and restoring RV function. In vitro, fucoidan inhibited hypoxia and growth factor-stimulated PASMC proliferation and migration. Chronic hypoxia caused an upregulation of P-selectin in the medial layer of the small pulmonary arteries. P-selectin was persistently upregulated in PASMCs of human and hypoxia-induced experimental PH. HIF-1α (hypoxia-inducible factor 1α) directly bound to the P-selectin promoter and transcriptionally activated P-selectin in hypoxia. P-selectin blockage resulted in a marked reduction of PASMC proliferation in vitro. Blockage of P-selectin by administration of anti-P-selectin Rb40.34 antibody and P-selectin-deficient mice improved vascular remodeling and restored RV function. Conclusions: Fucoidan is a potent natural adjuvant that represents a promising therapeutic approach for PH. Our data indicate a previously unrecognized role of P-selectin in the proliferative response of PASMCs associated with PH.


Assuntos
Anticoagulantes/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Miócitos de Músculo Liso/efeitos dos fármacos , Selectina-P/sangue , Polissacarídeos/uso terapêutico , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Fucus/química , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Camundongos
20.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265921

RESUMO

Although the response of the right ventricle (RV) to the increased afterload is an important determinant of the patient outcome, very little is known about the underlying mechanisms. Mast cells have been implicated in the pathogenesis of left ventricular maladaptive remodeling and failure. However, the role of mast cells in RV remodeling remains unexplored. We subjected mast cell-deficient WBB6F1-KitW/W-v (KitW/KitW-v) mice and their mast cell-sufficient littermate controls (MC+/+) to pulmonary artery banding (PAB). PAB led to RV dilatation, extensive myocardial fibrosis, and RV dysfunction in MC+/+ mice. In PAB KitW/KitW-v mice, RV remodeling was characterized by minimal RV chamber dilatation and preserved RV function. We further administered to C57Bl/6J mice either placebo or cromolyn treatment starting from day 1 or 7 days after PAB surgery to test whether mast cells stabilizing drugs can prevent or reverse maladaptive RV remodeling. Both preventive and therapeutic cromolyn applications significantly attenuated RV dilatation and improved RV function. Our study establishes a previously undescribed role of mast cells in pressure overload-induced adverse RV remodeling. Mast cells may thus represent an interesting target for the development of a new therapeutic approach directed specifically at the heart.


Assuntos
Mastócitos/metabolismo , Mastócitos/patologia , Pressão , Remodelação Ventricular/genética , Animais , Biomarcadores/metabolismo , Cromolina Sódica/administração & dosagem , Cromolina Sódica/farmacologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipertrofia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA