RESUMO
The European Space Agency (ESA) and Roscosmos ExoMars mission will launch the "Rosalind Franklin" rover in 2022 for a landing on Mars in 2023.The goals of the mission are to search for signs of past and present life on Mars, investigate the water/geochemical environment as a function of depth in the shallow subsurface, and characterize the surface environment. To meet these scientific objectives while minimizing the risk for landing, a 5-year-long landing site selection process was conducted by ESA, during which eight candidate sites were down selected to one: Oxia Planum. Oxia Planum is a 200 km-wide low-relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest margin of Arabia Terra. This region exhibits Noachian-aged terrains. We show in this study that the selected landing site has recorded at least two distinct aqueous environments, both of which occurred during the Noachian: (1) a first phase that led to the deposition and alteration of â¼100 m of layered clay-rich deposits and (2) a second phase of a fluviodeltaic system that postdates the widespread clay-rich layered unit. Rounded isolated buttes that overlie the clay-bearing unit may also be related to aqueous processes. Our study also details the formation of an unaltered mafic-rich dark resistant unit likely of Amazonian age that caps the other units and possibly originated from volcanism. Oxia Planum shows evidence for intense erosion from morphology (inverted features) and crater statistics. Due to these erosional processes, two types of Noachian sedimentary rocks are currently exposed. We also expect rocks at the surface to have been exposed to cosmic bombardment only recently, minimizing organic matter damage.
Assuntos
Exobiologia , Marte , Meio Ambiente Extraterreno , Geologia , ÁguaRESUMO
The presence of longitudinal ridges documented in long runout landslides across our solar system is commonly associated with the existence of a basal layer of ice. However, their development, the link between their occurrence and the emplacement mechanisms of long runout landslides, and the necessity of a basal ice layer remain poorly understood. Here, we analyse the morphometry of longitudinal ridges of a martian landslide and show that the wavelength of the ridges is 2-3 times the average thickness of the landslide deposit, a unique scaling relationship previously reported in ice-free rapid granular flow experiments. We recognize en-echelon features that we interpret as kinematic indicators, congruent with experimentally-measured transverse velocity gradient. We suggest that longitudinal ridges should not be considered as unequivocal evidence for presence of ice, rather as inevitable features of rapid granular sliding material, that originate from a mechanical instability once a kinematic threshold is surpassed.
RESUMO
Branching to sinuous ridges systems, hundreds of kilometers in length and comprising layered strata, are present across much of Arabia Terra, Mars. These ridges are interpreted as depositional fluvial channels, now preserved as inverted topography. Here we use high-resolution image and topographic data sets to investigate the morphology of these depositional systems and show key examples of their relationships to associated fluvial landforms. The inverted channel systems likely comprise indurated conglomerate, sandstone, and mudstone bodies, which form a multistory channel stratigraphy. The channel systems intersect local basins and indurated sedimentary mounds, which we interpret as paleolake deposits. Some inverted channels are located within erosional valley networks, which have regional and local catchments. Inverted channels are typically found in downslope sections of valley networks, sometimes at the margins of basins, and numerous different transition morphologies are observed. These relationships indicate a complex history of erosion and deposition, possibly controlled by changes in water or sediment flux, or base-level variation. Other inverted channel systems have no clear preserved catchment, likely lost due to regional resurfacing of upland areas. Sediment may have been transported through Arabia Terra toward the dichotomy and stored in local and regional-scale basins. Regional stratigraphic relations suggest these systems were active between the mid-Noachian and early Hesperian. The morphology of these systems is supportive of an early Mars climate, which was characterized by prolonged precipitation and runoff.
RESUMO
Ice-rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice-rock and D2O-ice-rock mixtures at temperatures of 263, 253 and 233â K, confining pressure of 0 and 48â MPa, rock fraction of 0-50â vol.% and strain-rates of 5 × 10-7 to 5 × 10-5â s-1 Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice-rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice-rock samples is suggested. These results demonstrate that flow laws can be found to describe ice-rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement.This article is part of the themed issue 'Microdynamics of ice'.