Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Physiol Rev ; 96(1): 1-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537427

RESUMO

Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.


Assuntos
Meiose , Espermatogênese , Espermatozoides/fisiologia , Células-Tronco/fisiologia , Testículo/fisiologia , Animais , Linhagem da Célula , Proliferação de Células , Humanos , Masculino , Morfogênese , Transdução de Sinais , Testículo/citologia , Testículo/embriologia , Tretinoína/metabolismo
2.
Development ; 145(13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899137

RESUMO

Spermatogenesis in mammals is a very complex, highly organized process, regulated in part by testosterone and retinoic acid (RA). Much is known about how RA and testosterone signaling pathways independently regulate this process, but there is almost no information regarding whether these two signaling pathways directly interact and whether RA is crucial for steroidogenic cell function. This study uses a transgenic mouse line that expresses a dominant-negative form of RA receptor α (RAR-DN) and the steroidogenic cell-specific Cre mouse line, Cyp17iCre, to generate male mice with steroidogenic cells unable to perform RA signaling. Testes of mutant mice displayed increased apoptosis of pachytene spermatocytes, an increased number of macrophages in the interstitium and a loss of advanced germ cells. Additionally, blocking RA signaling in Leydig cells resulted in increased permeability of the blood-testis barrier, decreased levels of the steroidogenic enzyme cytochrome P450 17a1 and decreased testosterone levels. Surprisingly, the epididymides of the mutant mice also displayed an abnormal phenotype. This study demonstrates that RA signaling is required in steroidogenic cells for their normal function and, thus, for male fertility.


Assuntos
Barreira Hematotesticular/metabolismo , Fertilidade/fisiologia , Receptor alfa de Ácido Retinoico/metabolismo , Transdução de Sinais/fisiologia , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Animais , Barreira Hematotesticular/citologia , Masculino , Camundongos , Camundongos Transgênicos , Receptor alfa de Ácido Retinoico/genética , Espermatócitos/citologia , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
3.
Biol Reprod ; 105(6): 1591-1602, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34494084

RESUMO

Sertoli cells are a critical component of the testis environment for their role in maintaining seminiferous tubule structure, establishing the blood-testis barrier, and nourishing maturing germ cells in a specialized niche. This study sought to uncover how Sertoli cells are regulated in the testis environment via germ cell crosstalk in the mouse. We found two major clusters of Sertoli cells as defined by their transcriptomes in Stages VII-VIII of the seminiferous epithelium and a cluster for all other stages. Additionally, we examined transcriptomes of germ cell-deficient testes and found that these existed in a state independent of either of the germ cell-sufficient clusters. Altogether, we highlight two main transcriptional states of Sertoli cells in an unperturbed testis environment, and a germ cell-deficient environment does not allow normal Sertoli cell transcriptome cycling and results in a state unique from either of those seen in Sertoli cells from a germ cell-sufficient environment.


Assuntos
Células de Sertoli/citologia , Transdução de Sinais , Espermatozoides/fisiologia , Animais , Masculino , Camundongos
4.
Mol Reprod Dev ; 88(2): 128-140, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400349

RESUMO

Spermatogonial development is a key process during spermatogenesis to prepare germ cells to enter meiosis. While the initial point of spermatogonial differentiation is well-characterized, the development of spermatogonia from the onset of differentiation to the point of meiotic entry has not been well defined. Further, STRA8 is highly induced at the onset of spermatogonial development but its function in spermatogonia has not been defined. To better understand how STRA8 impacts spermatogonia, we performed RNA-sequencing in both wild-type and STRA8 knockout mice at multiple timepoints during retinoic acid (RA)-stimulated spermatogonial development. As expected, in spermatogonia from wild-type mice we found that steady-state levels of many transcripts that define undifferentiated progenitor cells were decreased while transcripts that define the differentiating spermatogonia were increased as a result of the actions of RA. However, the spermatogonia from STRA8 knockout mice displayed a muted RA response such that there were more transcripts typical of undifferentiated cells and fewer transcripts typical of differentiating cells following RA action. While spermatogonia from STRA8 knockout mice can ultimately form spermatocytes that fail to complete meiosis, it appears that the defect likely begins as a result of altered messenger RNA levels during spermatogonial differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Espermatogênese/fisiologia , Espermatogônias/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Transcrição Gênica , Tretinoína/farmacologia
5.
Cell Mol Life Sci ; 76(11): 2185-2198, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30729254

RESUMO

RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.


Assuntos
Proteínas de Anfíbios/genética , Genoma , RNA Mensageiro/genética , Caracteres Sexuais , Transcriptoma , Xenopus/genética , Proteínas de Anfíbios/metabolismo , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Poliadenilação , RNA Mensageiro/metabolismo , Fatores Sexuais , Sequenciamento do Exoma , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(28): E5635-E5644, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28630288

RESUMO

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.


Assuntos
Meiose , RNA Interferente Pequeno/metabolismo , Retroelementos , Transgenes , Regiões 5' não Traduzidas , Animais , Códon , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Masculino , Metilação , Camundongos , Camundongos Transgênicos , Fases de Leitura Aberta , Fenótipo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Espermatócitos/metabolismo , Espermatogênese , Testículo/metabolismo
7.
Development ; 143(9): 1502-11, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965368

RESUMO

Retinoic acid (RA) signaling is crucial for spermatogonial differentiation, which is a key step for spermatogenesis. We explored the mechanisms underlying spermatogonial differentiation by targeting expression of a dominant-negative mutant of retinoic acid receptor α (RARα) specifically to the germ cells of transgenic mice to subvert the activity of endogenous receptors. Here we show that: (1) inhibition of retinoid signaling in germ cells completely blocked spermatogonial differentiation identical to vitamin A-deficient (VAD) mice; (2) the blockage of spermatogonial differentiation by impaired retinoid signaling resulted from an arrest of entry of the undifferentiated spermatogonia into S phase; and (3) retinoid signaling regulated spermatogonial differentiation through controlling expression of its direct target genes, including replication-dependent core histone genes. Taken together, our results demonstrate that the action of retinoid signaling on spermatogonial differentiation in vivo is direct through the spermatogonia itself, and provide the first evidence that this is mediated by regulation of expression of replication-dependent core histone genes.


Assuntos
Diferenciação Celular/genética , Receptor alfa de Ácido Retinoico/genética , Pontos de Checagem da Fase S do Ciclo Celular/genética , Transdução de Sinais/genética , Espermatogênese/genética , Espermatogônias/citologia , Animais , Histonas/genética , Masculino , Camundongos , Camundongos Transgênicos , Receptor alfa de Ácido Retinoico/metabolismo , Espermatogônias/metabolismo , Testículo/metabolismo , Tretinoína/metabolismo , Deficiência de Vitamina A
8.
Biol Reprod ; 100(2): 547-560, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247516

RESUMO

Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Testículo/metabolismo , Tretinoína/metabolismo , Família Aldeído Desidrogenase 1/genética , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genótipo , Isoenzimas , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Tamoxifeno/farmacologia
9.
Dev Biol ; 432(2): 229-236, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29037932

RESUMO

The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.


Assuntos
Espermatogênese/fisiologia , Tretinoína/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/citologia , Testículo/metabolismo
10.
Biol Reprod ; 99(1): 87-100, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462262

RESUMO

The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating to male fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.


Assuntos
Fertilidade/fisiologia , Células Germinativas/citologia , Células de Sertoli/citologia , Espermatogênese/fisiologia , Testículo/citologia , Animais , Humanos , Masculino , Epitélio Seminífero/citologia
11.
Biol Reprod ; 98(5): 722-738, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408990

RESUMO

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.


Assuntos
Células Intersticiais do Testículo/metabolismo , Polirribossomos/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Barreira Hematotesticular , Expressão Gênica , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Epitélio Seminífero/citologia , Epitélio Seminífero/metabolismo , Esteroide 21-Hidroxilase/genética , Esteroide 21-Hidroxilase/metabolismo , Testículo/citologia , Transcortina/genética , Transcortina/metabolismo
12.
Nature ; 476(7358): 101-4, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775990

RESUMO

Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/ß-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.


Assuntos
Caracteres Sexuais , Processos de Determinação Sexual/fisiologia , Diferenciação Sexual/fisiologia , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Transdiferenciação Celular , Feminino , Feminização/genética , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Masculino , Camundongos , Modelos Biológicos , Ovário/citologia , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/citologia , Células Tecais/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
13.
PLoS Genet ; 10(8): e1004541, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25102060

RESUMO

In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA), the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Meiose/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Tretinoína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Replicação do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Germinativas/crescimento & desenvolvimento , Masculino , Camundongos , Mitose/genética , Proteínas Nucleares/biossíntese , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Fosfoproteínas/biossíntese , Proteínas de Ligação a RNA/biossíntese , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos , Tretinoína/administração & dosagem
14.
J Biol Chem ; 290(45): 27239-27247, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26391396

RESUMO

Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5(-/-)Rdh11(-/-) mice as compared with Rdh5(-/-) mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5(-/-) and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision.


Assuntos
Oxirredutases do Álcool/deficiência , Adaptação à Escuridão/fisiologia , Epitélio Pigmentado da Retina/enzimologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Feminino , Expressão Gênica , Cinética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases/deficiência , Oxirredutases/genética , Oxirredutases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/etiologia , Epitélio Pigmentado da Retina/anatomia & histologia , Epitélio Pigmentado da Retina/fisiologia , Retinaldeído/biossíntese , Retinoides/metabolismo , Células Sf9 , Spodoptera
15.
Biol Reprod ; 94(1): 12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26632609

RESUMO

Perturbations in the vitamin A metabolism pathway could be a significant cause of male infertility, as well as a target toward the development of a male contraceptive, necessitating the need for a better understanding of how testicular retinoic acid (RA) concentrations are regulated. Quantitative analyses have recently demonstrated that RA is present in a pulsatile manner along testis tubules. However, it is unclear if the aldehyde dehydrogenase (ALDH) enzymes, which are responsible for RA synthesis, contribute to the regulation of these RA concentration gradients. Previous studies have alluded to fluctuations in ALDH enzymes across the spermatogenic cycle, but these inferences have been based primarily on qualitative transcript localization experiments. Here, we show via various quantitative methods that the three well-known ALDH enzymes (ALDH1A1, ALDH1A2, and ALDH1A3), and an ALDH enzyme previously unreported in the murine testis (ALDH8A1), are not expressed in a stage-specific manner in the adult testis, but do fluctuate throughout juvenile development in perfect agreement with the first appearance of each advancing germ cell type. We also show, via treatments with a known ALDH inhibitor, that lowered testicular RA levels result in an increase in blood-testis barrier permeability, meiotic recombination, and meiotic defects. Taken together, these data further our understanding of the complex regulatory actions of RA on various spermatogenic events and, in contrast with previous studies, also suggest that the ALDH enzymes are not responsible for regulating the recently measured RA pulse.


Assuntos
Aldeído Desidrogenase/biossíntese , Espermatogênese/genética , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/genética , Animais , Biotina/metabolismo , Barreira Hematotesticular/efeitos dos fármacos , Pareamento Cromossômico/efeitos dos fármacos , Diaminas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/genética , Isoenzimas/metabolismo , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Tretinoína/metabolismo
16.
Biol Reprod ; 95(4): 81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488029

RESUMO

Retinoic acid (RA), the active metabolite of vitamin A, is known to be required for the differentiation of spermatogonia. The first round of spermatogenesis initiates in response to RA and occurs in patches along the length of the seminiferous tubule. However, very little is known about the individual differentiating spermatogonial populations and their progression through the cell cycle due to the heterogeneous nature of the onset of spermatogenesis. In this study, we utilized WIN 18,446 and RA as tools to generate testes enriched with different populations of spermatogonia to further investigate 1) the undifferentiated to differentiating spermatogonial transition, 2) the progression of the differentiating spermatogonia through the cell cycle, and 3) Sertoli cell number in response to altered RA levels. WIN 18,446/RA-treated neonatal mice were used to determine when synchronous S phases occurred in the differentiating spermatogonial population following treatment. Five differentiating spermatogonial S phase windows were identified between spermatogonial differentiation and formation of preleptotene spermatocytes. In addition, a slight increase in Sertoli cell number was observed following RA treatment, possibly implicating a role for RA in Sertoli cell cycle progression. This study has enhanced our understanding of the spermatogonial populations present in the neonatal testis during the onset of spermatogenesis by mapping the cell cycle kinetics of both the undifferentiated and the differentiating spermatogonial populations and identifying the precise timing of when specific individual differentiating spermatogonial populations are enriched within the testis following synchrony, thus providing an essential tool for further study of the differentiating spermatogonia.


Assuntos
Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Tretinoína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Diaminas/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Túbulos Seminíferos/metabolismo , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatogônias/fisiologia , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/fisiologia , Tretinoína/fisiologia
17.
Proc Natl Acad Sci U S A ; 110(2): 543-8, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267101

RESUMO

Retinoic acid (RA), an active vitamin A derivative, is essential for mammalian spermatogenesis. Genetic studies have revealed that oxidation of vitamin A to retinal by retinol dehydrogenase 10 (RDH10) is critical for embryonic RA biosynthesis. However, physiological roles of RDH10 in postnatal RA synthesis remain unclear, given that Rdh10 loss-of-function mutations lead to early embryonic lethality. We conducted in vivo genetic studies of Rdh10 in postnatal mouse testes and found that an RDH10 deficiency in Sertoli cells, but not in germ cells, results in a mild germ cell depletion phenotype. A deficiency of RDH10 in both Sertoli and germ cells in juvenile mice results in a blockage of spermatogonial differentiation, similar to that seen in vitamin A-deficient animals. This defect in spermatogenesis arises from a complete deficiency in juvenile testicular RA synthesis and can be rescued by retinoid administration. Thus, in juvenile mice, the primary, but not exclusive, source of RA in the testes is Sertoli cells. In contrast, adult Rdh10-deficient mice exhibit phenotypically normal spermatogenesis, indicating that during development a change occurs in either the cellular source of RA or the retinaldehyde dehydrogenase involved in RA synthesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Espermatogênese/fisiologia , Oxirredutases do Álcool/deficiência , Animais , Primers do DNA/genética , Galactosídeos , Técnicas Histológicas , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Indóis , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Sertoli/metabolismo , Testículo/metabolismo , Tretinoína/metabolismo , Vitamina A/metabolismo
18.
J Lipid Res ; 56(2): 342-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25502770

RESUMO

Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types.


Assuntos
Aldeído Desidrogenase/metabolismo , Testículo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Cromatografia Líquida , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Espectrometria de Massas em Tandem , Tretinoína/metabolismo
19.
Biol Reprod ; 93(1): 19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26040672

RESUMO

The active metabolite of vitamin A, retinoic acid (RA), is known to be essential for spermatogenesis. Changes to RA levels within the seminiferous epithelium can alter the development of male germ cells, including blocking their differentiation completely. Excess RA has been shown to cause germ cell death in both neonatal and adult animals, yet the cells capable of degrading RA within the testis have yet to be investigated. One previous study alluded to a requirement for one of the RA degrading enzymes, CYP26B1, in Sertoli cells but no data exist to determine whether germ cells possess the ability to degrade RA. To bridge this gap, the roles of CYP26A1 and CYP26B1 within the seminiferous epithelium were investigated by creating single and dual conditional knockouts of these enzymes in either Sertoli or germ cells. Analysis of these knockout models revealed that deletion of both Cyp26a1 and Cyp26b1 in either cell type resulted in increased vacuolization within the seminiferous tubules, delayed spermatid release, and an increase in the number of STRA8-positive spermatogonia, but spermatozoa were still produced and the animals were found to be fertile. However, elimination of CYP26B1 activity within both germ and Sertoli cells resulted in severe male subfertility, with a loss of advanced germ cells from the seminiferous epithelium. These data indicate that CYP26 activity within either Sertoli or germ cells is essential for the normal progression of spermatogenesis and that its loss can result in reduced male fertility.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Epitélio Seminífero/enzimologia , Espermatogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ácido Retinoico 4 Hidroxilase , Células de Sertoli/metabolismo , Espermatogônias/metabolismo , Espermatozoides/metabolismo
20.
Biol Reprod ; 92(2): 37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25519186

RESUMO

The asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm. These data show that processive pulses of retinoic acid are generated during spermatogonial differentiation and are the likely trigger for cyclic spermatogenesis and allow us, for the first time, to understand how the cycle of the seminiferous epithelium is generated and maintained. In addition, this study represents the first direct quantification of a retinoid gradient controlling cellular differentiation in a postnatal tissue.


Assuntos
Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Tretinoína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Masculino , Camundongos , Receptores do Ácido Retinoico/metabolismo , Testículo/metabolismo , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA