Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant J ; 109(3): 615-632, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34780111

RESUMO

Photosynthetic efficiency and sink demand are tightly correlated with rates of phloem loading, where maintaining low cytosolic sugar concentrations is paramount to prevent the downregulation of photosynthesis. Sugars Will Eventually be Exported Transporters (SWEETs) are thought to have a pivotal role in the apoplastic phloem loading of C4 grasses. SWEETs have not been well studied in C4 species, and their investigation is complicated by photosynthesis taking place across two cell types and, therefore, photoassimilate export can occur from either one. SWEET13 homologues in C4 grasses have been proposed to facilitate apoplastic phloem loading. Here, we provide evidence for this hypothesis using the C4 grass Setaria viridis. Expression analyses on the leaf gradient of C4 species Setaria and Sorghum bicolor show abundant transcript levels for SWEET13 homologues. Carbohydrate profiling along the Setaria leaf shows total sugar content to be significantly higher in the mature leaf tip compared with the younger tissue at the base. We present the first known immunolocalization results for SvSWEET13a and SvSWEET13b using novel isoform-specific antisera. These results show localization to the bundle sheath and phloem parenchyma cells of both minor and major veins. We further present the first transport kinetics study of C4 monocot SWEETs by using a Xenopus laevis oocyte heterologous expression system. We demonstrate that SvSWEET13a and SvSWEET13b are high-capacity transporters of glucose and sucrose, with a higher apparent Vmax for sucrose, compared with glucose, typical of clade III SWEETs. Collectively, these results provide evidence for an apoplastic phloem loading pathway in Setaria and possibly other C4 species.


Assuntos
Transporte Biológico/genética , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Floema/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotossíntese , Transcrição Gênica
2.
J Exp Bot ; 74(10): 2968-2986, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883216

RESUMO

In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.


Assuntos
Setaria (Planta) , Açúcares , Açúcares/metabolismo , Setaria (Planta)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Floema/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Sacarose/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498868

RESUMO

Cannabis sativa (Cannabis) has recently been legalized in multiple countries globally for either its recreational or medicinal use. This, in turn, has led to a marked increase in the number of Cannabis varieties available for use in either market. However, little information currently exists on the genetic distinction between adopted varieties. Such fundamental knowledge is of considerable value and underpins the accelerated development of both a nascent pharmaceutical industry and the commercial recreational market. Therefore, in this study, we sought to assess genetic diversity across 10 Cannabis varieties by undertaking a reduced representation shotgun sequencing approach on 83 individual plants to identify variations which could be used to resolve the genetic structure of the assessed population. Such an approach also allowed for the identification of the genetic features putatively associated with the production of secondary metabolites in Cannabis. Initial analysis identified 3608 variants across the assessed population with phylogenetic analysis of this data subsequently enabling the confident grouping of each variety into distinct subpopulations. Within our dataset, the most diagnostically informative single nucleotide polymorphisms (SNPs) were determined to be associated with the long-terminal repeat (LTRs) class of retroelements, with 172 such SNPs used to fully resolve the genetic structure of the assessed population. These 172 SNPs could be used to design a targeted resequencing panel, which we propose could be used to rapidly screen different Cannabis plants to determine genetic relationships, as well as to provide a more robust, scientific classification of Cannabis varieties as the field moves into the pharmaceutical sphere.


Assuntos
Cannabis , Alucinógenos , Cannabis/genética , Cannabis/química , Filogenia , Sequências Repetidas Terminais , Análise de Sequência de DNA , Polimorfismo de Nucleotídeo Único , Agonistas de Receptores de Canabinoides , Variação Genética
4.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114207

RESUMO

Arabidopsis thaliana (Arabidopsis) has been used extensively as a heterologous system for molecular manipulation to genetically characterize both dicotyledonous and monocotyledonous plant species. Here, we report on Arabidopsis transformant lines molecularly manipulated to over-accumulate the small regulatory RNA microRNA397 (miR397) from the emerging C4 monocotyledonous grass model species Setaria viridis (S. viridis). The generated transformant lines, termed SvMIR397 plants, displayed a range of developmental phenotypes that ranged from a mild, wild-type-like phenotype, to a severe, full dwarfism phenotype. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)-based profiling of the SvMIR397 transformant population revealed a strong correlation between the degree of miR397 over-accumulation, repressed LACCASE (LAC) target gene expression, reduced lignin content, and the severity of the developmental phenotype displayed by SvMIR397 transformants. Further, exposure of SvMIR397 transformants to a 7-day regime of salt stress revealed the SvMIR397 transformant lines to be more sensitive to the imposed stress than were wild-type Arabidopsis plants. Taken together, the findings reported here via the use of Arabidopsis as a heterologous system show that the S. viridis miR397 small regulatory RNA is able to repress the expression of three Arabidopsis LAC genes which led to reduced lignin content and increased salt stress sensitivity.


Assuntos
Arabidopsis/genética , Lacase/genética , MicroRNAs/genética , Setaria (Planta)/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Estresse Salino
5.
Plant Physiol ; 173(2): 1330-1341, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986867

RESUMO

How sucrose transporters (SUTs) regulate phloem unloading in monocot stems is poorly understood and particularly so for species storing high Suc concentrations. To this end, Sorghum bicolor SUTs SbSUT1 and SbSUT5 were characterized by determining their transport properties heterologously expressed in yeast or Xenopus laevis oocytes, and their in planta cellular and subcellular localization. The plasma membrane-localized SbSUT1 and SbSUT5 exhibited a strong selectivity for Suc and high Suc affinities in X. laevis oocytes at pH 5-SbSUT1, 6.3 ± 0.7 mm, and SbSUT5, 2.4 ± 0.5 mm Suc. The Suc affinity of SbSUT1 was dependent on membrane potential and pH. In contrast, SbSUT5 Suc affinity was independent of membrane potential and pH but supported high transport rates at neutral pH. Suc transport by the tonoplast localized SbSUT4 could not be detected using yeast or X. laevis oocytes. Across internode development, SUTs, other than SbSUT4, were immunolocalized to sieve elements, while for elongating and recently elongated internodes, SUTs also were detected in storage parenchyma cells. We conclude that apoplasmic Suc unloading from de-energized protophloem sieve elements in meristematic zones may be mediated by reversal of SbSUT1 and/or by uniporting SWEETs. Storage parenchyma localized SbSUT1 and SbSUT5 may accumulate Suc from the stem apoplasms of elongating and recently elongated internodes, whereas SbSUT4 may function to release Suc from vacuoles. Transiting from an apoplasmic to symplasmic unloading pathway as the stem matures, SbSUT1 and SbSUT5 increasingly function in Suc retrieval into metaphloem sieve elements to maintain a high turgor to drive symplasmic unloading by bulk flow.


Assuntos
Floema/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Sorghum/metabolismo , Animais , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Oócitos/metabolismo , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Sacarose/metabolismo , Xenopus laevis/metabolismo
6.
Br J Clin Pharmacol ; 84(11): 2463-2467, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29701252

RESUMO

The therapeutic application of cannabis is attracting substantial public and clinical interest. The cannabis plant has been described as a veritable 'treasure trove', producing more than 100 different cannabinoids, although the focus to date has been on the psychoactive molecule delta-9-tetraydrocannabinol (THC) and cannabidiol (CBD). Other numerous secondary metabolites of cannabis, the terpenes, some of which share the common intermediary geranyl diphosphate (GPP) with the cannabinoids, are hypothesized to contribute synergistically to their therapeutic benefits, an attribute that has been described as the 'entourage effect'. The effective delivery of such a complex multicomponent pharmaceutical relies upon the stable genetic background and standardized growth of the plant material, particularly if the raw botanical product in the form of the dried pistillate inflorescence (flos) is the source. Following supercritical CO2 extraction of the inflorescence (and possibly bracts), the secondary metabolites can be blended to provide a specific ratio of major cannabinoids (THC : CBD) or individual cannabinoids can be isolated, purified and supplied as the pharmaceutical. Intensive breeding strategies will provide novel cultivars of cannabis possessing elevated levels of specific cannabinoids or other secondary metabolites.


Assuntos
Canabinoides/isolamento & purificação , Cannabis/química , Extratos Vegetais/química , Canabidiol/isolamento & purificação , Canabidiol/farmacologia , Canabinoides/química , Canabinoides/farmacologia , Cannabis/metabolismo , Dronabinol/isolamento & purificação , Dronabinol/farmacologia , Humanos , Extratos Vegetais/farmacologia , Metabolismo Secundário , Terpenos/isolamento & purificação , Terpenos/farmacologia
7.
Br J Clin Pharmacol ; 84(11): 2468-2476, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953631

RESUMO

There has been a resurgence in interest and use of the cannabis plant for medical purposes. However, an in-depth understanding of plant contaminants and toxin effects on stability of plant compounds and human bioavailability is needed. This systematic review aims to assess current understanding of the contaminants of cannabis and their effect on human health, leading to the identification of knowledge gaps for future investigation. A systematic search of seven indexed biological and biomedical databases and the Cochrane library was undertaken from inception up to December 2017. A qualitative synthesis of filtered results was undertaken after independent assessment for eligibility by two reviewers. The common cannabis contaminants include microbes, heavy metals and pesticides. Their direct human toxicity is poorly quantified but include infection, carcinogenicity, reproductive and developmental impacts. Cannabis dosing formulations and administration routes affect the transformation and bioavailability of contaminants. There may be important pharmacokinetic interactions between the alkaloid active ingredients of cannabis (i.e. phytocannabinoids) and contaminants but these are not yet identified nor quantified. There is significant paucity in the literature describing the prevalence and human impact of cannabis contaminants. Advances in the availability of cannabis globally warrant further research in this area, particularly when being used for patients.


Assuntos
Cannabis/química , Exposição Ambiental/análise , Poluição Ambiental/análise , Animais , Canabinoides/química , Canabinoides/isolamento & purificação , Contaminação de Medicamentos , Exposição Ambiental/efeitos adversos , Humanos , Metais Pesados/análise , Praguicidas/análise , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química
8.
Plant Direct ; 8(4): e585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651017

RESUMO

Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 µM), mannose (92 µM), galactose (145 µM), fructose (224 µM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.

9.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903960

RESUMO

Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.

10.
J Integr Plant Biol ; 53(2): 120-35, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21205189

RESUMO

The main feedstocks for bioethanol are sugarcane (Saccharum officinarum) and maize (Zea mays), both of which are C(4) grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C(4) plants have high light, water and nitrogen use efficiency, as compared with C(3) species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.


Assuntos
Biocombustíveis , Lignina/metabolismo , Plantas/metabolismo , Biomassa , Saccharum/metabolismo , Zea mays/metabolismo
11.
Plants (Basel) ; 10(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435199

RESUMO

In recent decades, the presence of cadmium (Cd) in the environment has increased significantly due to anthropogenic activities. Cd is taken up from the soil by plant roots for its subsequent translocation to shoots. However, Cd is a non-essential heavy metal and is therefore toxic to plants when it over-accumulates. MicroRNA (miRNA)-directed gene expression regulation is central to the response of a plant to Cd stress. Here, we document the miRNA-directed response of wild-type Arabidopsis thaliana (Arabidopsis) plants and the drb1, drb2 and drb4 mutant lines to Cd stress. Phenotypic and physiological analyses revealed the drb1 mutant to display the highest degree of tolerance to the imposed stress while the drb2 mutant was the most sensitive. RT-qPCR-based molecular profiling of miRNA abundance and miRNA target gene expression revealed DRB1 to be the primary double-stranded RNA binding (DRB) protein required for the production of six of the seven Cd-responsive miRNAs analyzed. However, DRB2, and not DRB1, was determined to be required for miR396 production. RT-qPCR further inferred that transcript cleavage was the RNA silencing mechanism directed by each assessed miRNA to control miRNA target gene expression. Taken together, the results presented here reveal the complexity of the miRNA-directed molecular response of Arabidopsis to Cd stress.

12.
Plants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961041

RESUMO

In plant cells, the molecular and metabolic processes of nucleic acid synthesis, phospholipid production, coenzyme activation and the generation of the vast amount of chemical energy required to drive these processes relies on an adequate supply of the essential macronutrient, phosphorous (P). The requirement of an appropriate level of P in plant cells is evidenced by the intricately linked molecular mechanisms of P sensing, signaling and transport. One such mechanism is the posttranscriptional regulation of the P response pathway by the highly conserved plant microRNA (miRNA), miR399. In addition to miR399, numerous other plant miRNAs are also required to respond to environmental stress, including miR396. Here, we exposed Arabidopsis thaliana (Arabidopsis) transformant lines which harbor molecular modifications to the miR396 and miR399 expression modules to phosphate (PO4) starvation. We show that molecular alteration of either miR396 or miR399 abundance afforded the Arabidopsis transformant lines different degrees of tolerance to PO4 starvation. Furthermore, RT-qPCR assessment of PO4-starved miR396 and miR399 transformants revealed that the tolerance displayed by these plant lines to this form of abiotic stress most likely stemmed from the altered expression of the target genes of these two miRNAs. Therefore, this study forms an early step towards the future development of molecularly modified plant lines which possess a degree of tolerance to growth in a PO4 deficient environment.

13.
Biomedicines ; 9(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652704

RESUMO

Cannabis sativa (Cannabis) is one of the world's most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.

14.
Plants (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396498

RESUMO

In Arabidopsis thaliana (Arabidopsis), the microRNA399 (miR399)/PHOSPHATE2 (PHO2) expression module is central to the response of Arabidopsis to phosphate (PO4) stress. In addition, miR399 has been demonstrated to also alter in abundance in response to salt stress. We therefore used a molecular modification approach to alter miR399 abundance to investigate the requirement of altered miR399 abundance in Arabidopsis in response to salt stress. The generated transformant lines, MIM399 and MIR399 plants, with reduced and elevated miR399 abundance respectively, displayed differences in their phenotypic and physiological response to those of wild-type Arabidopsis (Col-0) plants following exposure to a 7-day period of salt stress. However, at the molecular level, elevated miR399 abundance, and therefore, altered PHO2 target gene expression in salt-stressed Col-0, MIM399 and MIR399 plants, resulted in significant changes to the expression level of the two PO4 transporter genes, PHOSPHATE TRANSPORTER1;4 (PHT1;4) and PHT1;9. Elevated PHT1;4 and PHT1;9 PO4 transporter levels in salt stressed Arabidopsis would enhance PO4 translocation from the root to the shoot tissue which would supply additional levels of this precious cellular resource that could be utilized by the aerial tissues of salt stressed Arabidopsis to either maintain essential biological processes or to mount an adaptive response to salt stress.

15.
Front Plant Sci ; 11: 281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231678

RESUMO

Setaria viridis (green foxtail) has been identified as a potential experimental model system to genetically and molecularly characterise the C4 monocotyledonous grasses due to its small physical size, short generation time and prolific seed production, together with a sequenced and annotated genome. Setaria viridis is the wild ancestor of the cropping species, foxtail millet (Setaria italica), with both Setaria species sharing a close evolutionary relationship with the agronomically important species, maize, sorghum, and sugarcane, as well as the bioenergy feedstocks, switchgrass, and Miscanthus. However, an efficient and reproducible transformation protocol is required to further advance the use of S. viridis to study the molecular genetics of C4 monocotyledonous grasses. An efficient and reproducible protocol was established for Agrobacterium tumefaciens-mediated transformation of S. viridis (Accession A10) regenerable callus material derived from mature seeds, a protocol that returned an average transformation efficiency of 6.3%. The efficiency of this protocol was the result of the: (i) use of mature embryo derived callus material; (ii) age of the seed used to induce callus formation; (iii) composition of the callus induction media, including the addition of the ethylene inhibitor, silver nitrate; (iv) use of a co-cultivation approach, and; (v) concentration of the selective agent. Our protocol furthers the use of S. viridis as an experimental model system to study the molecular genetics of C4 monocotyledonous grasses for the potential future development of improved C4 cropping species.

16.
Methods Mol Biol ; 1932: 15-39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701489

RESUMO

Plant microRNAs are an endogenous class of small regulatory RNA central to the posttranscriptional regulation of gene expression in plant development and environmental stress adaptation or in response to pathogen challenge. The plant microRNA pathway is readily separated into two distinct stages: (1) the production stage, which is localized to the plant cell nucleus and where the microRNA small RNA is processed from a double-stranded RNA precursor transcript, and (2) the action stage, which is localized to the plant cell cytoplasm and where the mature microRNA small RNA is loaded into an effector complex and is used by the complex as a sequence specificity guide to direct expression repression of target genes harboring highly complementary microRNA target sequences. Historical research indicated that the plant microRNA pathway was a highly structured, almost linear pathway requiring a small set of core machinery proteins. However, contemporary research has demonstrated that the plant microRNA pathway is highly dynamic, and to allow for this flexibility, a large and highly functionally diverse set of machinery proteins is now known to be required. For example, recent research has shown that plant microRNAs can regulate target gene expression via a translational repression mechanism of RNA silencing in addition to the standard messenger RNA cleavage-based mechanism of RNA silencing: a mode of RNA silencing originally assigned to all plant microRNAs. Using Arabidopsis thaliana as our model system, here we report on both the core and auxiliary sets of machinery proteins now known to be required for both microRNA production and microRNA action in plants.


Assuntos
MicroRNAs/genética , RNA de Plantas/genética , Animais , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética
17.
Plants (Basel) ; 8(3)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857364

RESUMO

It is well established among interdisciplinary researchers that there is an urgent need to address the negative impacts that accompany climate change. One such negative impact is the increased prevalence of unfavorable environmental conditions that significantly contribute to reduced agricultural yield. Plant microRNAs (miRNAs) are key gene expression regulators that control development, defense against invading pathogens and adaptation to abiotic stress. Arabidopsis thaliana (Arabidopsis) can be readily molecularly manipulated, therefore offering an excellent experimental system to alter the profile of abiotic stress responsive miRNA/target gene expression modules to determine whether such modification enables Arabidopsis to express an altered abiotic stress response phenotype. Towards this goal, high throughput sequencing was used to profile the miRNA landscape of Arabidopsis whole seedlings exposed to heat, drought and salt stress, and identified 121, 123 and 118 miRNAs with a greater than 2-fold altered abundance, respectively. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) was next employed to experimentally validate miRNA abundance fold changes, and to document reciprocal expression trends for the target genes of miRNAs determined abiotic stress responsive. RT-qPCR also demonstrated that each miRNA/target gene expression module determined to be abiotic stress responsive in Arabidopsis whole seedlings was reflective of altered miRNA/target gene abundance in Arabidopsis root and shoot tissues post salt stress exposure. Taken together, the data presented here offers an excellent starting platform to identify the miRNA/target gene expression modules for future molecular manipulation to generate plant lines that display an altered response phenotype to abiotic stress.

18.
Plants (Basel) ; 8(5)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086001

RESUMO

Adequate phosphorous (P) is essential to plant cells to ensure normal plant growth and development. Therefore, plants employ elegant mechanisms to regulate P abundance across their developmentally distinct tissues. One such mechanism is PHOSPHATE2 (PHO2)-directed ubiquitin-mediated degradation of a cohort of phosphate (PO4) transporters. PHO2 is itself under tight regulation by the PO4 responsive microRNA (miRNA), miR399. The DOUBLE-STRANDED RNA BINDING (DRB) proteins, DRB1, DRB2 and DRB4, have each been assigned a specific functional role in the Arabidopsis thaliana (Arabidopsis) miRNA pathway. Here, we assessed the requirement of DRB1, DRB2 and DRB4 to regulate the miR399/PHO2 expression module under PO4 starvations conditions. Via the phenotypic and molecular assessment of the knockout mutant plant lines, drb1, drb2 and drb4, we show here that; (1) DRB1 and DRB2 are required to maintain P homeostasis in Arabidopsis shoot and root tissues; (2) DRB1 is the primary DRB required for miR399 production; (3) DRB2 and DRB4 play secondary roles in regulating miR399 production, and; (4) miR399 appears to direct expression regulation of the PHO2 transcript via both an mRNA cleavage and translational repression mode of RNA silencing. Together, the hierarchical contribution of DRB1, DRB2 and DRB4 demonstrated here to be required for the appropriate regulation of the miR399/PHO2 expression module identifies the extreme importance of P homeostasis maintenance in Arabidopsis to ensure that numerous vital cellular processes are maintained across Arabidopsis tissues under a changing cellular environment.

19.
Plant Methods ; 14: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581727

RESUMO

BACKGROUND: Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail (Setaria viridis) has recently been proposed as a potential experimental model for the study of C4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens-mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis (S. viridis). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. RESULTS: Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE/THERONINE-PROTEIN PHOSPHATASE 2A (PP2A), 5'-ADENYLYLSULFATE REDUCTASE 6 (ASPR6) and DUAL SPECIFICITY PHOSPHATASE (DUSP) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A, ASPR6 and DUSP, were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes across the same tissues. CONCLUSIONS: This approach readily demonstrated the suitably of the three selected reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. Further, the work reported here forms a highly useful platform for future gene expression quantification in S. viridis and can also be potentially directly translatable to other closely related and agronomically important C4 crop species.

20.
Methods Mol Biol ; 1770: 285-304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978409

RESUMO

Plant histology and imaging traditionally involve the transformation of tissues into thin sections to minimize light scatter in opaque material, allowing optical clarity and high-resolution microscopy. Recently, new techniques in 3D tissue clearing, including PEA-CLARITY, have been developed to minimize light scatter within intact, whole samples. These techniques can achieve equivalent microscopic resolution to that of thin section imaging with the added benefit of maintaining the original 3D structure and position of biomolecules of interest. Furthermore, PEA-CLARITY is compatible with standard stains and immunohistochemistry, allowing molecular interrogation of intact, 3D tissues. This chapter outlines the current methods available for 3D histology in plants and details the materials, equipment, reagents, and procedure for the PEA-CLARITY technique.


Assuntos
Imageamento Tridimensional , Imagem Molecular , Fotossíntese , Plantas/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Imuno-Histoquímica , Lipídeos/química , Imagem Molecular/métodos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA