Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Sci Technol ; 58(20): 8946-8954, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38736287

RESUMO

Molecular diffusion of chemical species in subsurface environments─rock formations, soil sediments, marine, river, and lake sediments─plays a critical role in a variety of dynamic processes, many of which affect water chemistry. We investigate and demonstrate the occurrence of anomalous (non-Fickian) diffusion behavior, distinct from classically assumed Fickian diffusion. We measured molecular diffusion through a series of five chalk and dolomite rock samples over a period of about two months. We demonstrate that in all cases, diffusion behavior is significantly different than Fickian. We then analyze the results using a continuous time random walk framework that can describe anomalous diffusion in heterogeneous porous materials such as rock. This methodology shows extreme long-time tailing of tracer advance as compared to conventional Fickian diffusion processes. The finding that distinct anomalous diffusion occurs ubiquitously implies that diffusion-driven processes in subsurface zones should be analyzed using tools that account for non-Fickian diffusion.


Assuntos
Sedimentos Geológicos , Difusão , Porosidade
2.
J Am Chem Soc ; 145(9): 5410-5421, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825993

RESUMO

We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.

3.
Environ Sci Technol ; 57(2): 1071-1079, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36598768

RESUMO

Micro- and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measurements of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compromised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.


Assuntos
Urânio , Poluentes Químicos da Água , Animais , Raios X , Daphnia , Urânio/toxicidade , Fluorescência , Síncrotrons , Trato Gastrointestinal , Poluentes Químicos da Água/toxicidade
4.
J Exp Bot ; 73(1): 339-350, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34463334

RESUMO

Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. It has been proposed that hyperaccumulator plants may use the excess zinc to fend off pathogens and herbivores. However, there is little evidence of a similar response in other plants. Here we show that Arabidopsis thaliana leaves inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) accumulate zinc and manganese at the infection site. Zinc accumulation did not occur in a double mutant in the zinc transporters HEAVY METAL ATPASE2 and HEAVY METAL ATPASE4 (HMA2 and HMA4), which has reduced zinc translocation from roots to shoots. Consistent with a role in plant immunity, expression of HMA2 and HMA4 was up-regulated upon PcBMM inoculation, and hma2hma4 mutants were more susceptible to PcBMM infection. This phenotype was rescued upon zinc supplementation. The increased susceptibility to PcBMM infection was not due to the diminished expression of genes involved in the salicylic acid, ethylene, or jasmonate pathways since they were constitutively up-regulated in hma2hma4 plants. Our data indicate a role of zinc in resistance to PcBMM in plants containing ordinary levels of zinc. This layer of immunity runs in parallel to the already characterized defence pathways, and its removal has a direct effect on resistance to pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Zinco/metabolismo
5.
J Synchrotron Radiat ; 28(Pt 6): 1672-1683, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738921

RESUMO

Uranium speciation and redox behaviour is of critical importance in the nuclear fuel cycle. X-ray absorption near-edge spectroscopy (XANES) is commonly used to probe the oxidation state and speciation of uranium, and other elements, at the macroscopic and microscopic scale, within nuclear materials. Two-dimensional (2D) speciation maps, derived from microfocus X-ray fluorescence and XANES data, provide essential information on the spatial variation and gradients of the oxidation state of redox active elements such as uranium. In the present work, we elaborate and evaluate approaches to the construction of 2D speciation maps, in an effort to maximize sensitivity to the U oxidation state at the U L3-edge, applied to a suite of synthetic Chernobyl lava specimens. Our analysis shows that calibration of speciation maps can be improved by determination of the normalized X-ray absorption at excitation energies selected to maximize oxidation state contrast. The maps are calibrated to the normalized absorption of U L3 XANES spectra of relevant reference compounds, modelled using a combination of arctangent and pseudo-Voigt functions (to represent the photoelectric absorption and multiple-scattering contributions). We validate this approach by microfocus X-ray diffraction and XANES analysis of points of interest, which afford average U oxidation states in excellent agreement with those estimated from the chemical state maps. This simple and easy-to-implement approach is general and transferrable, and will assist in the future analysis of real lava-like fuel-containing materials to understand their environmental degradation, which is a source of radioactive dust production within the Chernobyl shelter.


Assuntos
Acidente Nuclear de Chernobyl , Urânio , Síncrotrons , Espectroscopia por Absorção de Raios X , Raios X
6.
Angew Chem Int Ed Engl ; 60(18): 10032-10039, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33523530

RESUMO

The introduction of structural defects in metal-organic frameworks (MOFs), often achieved through the fractional use of defective linkers, is emerging as a means to refine the properties of existing MOFs. These linkers, missing coordination fragments, create unsaturated framework nodes that may alter the properties of the MOF. A property-targeted utilization of this approach demands an understanding of the structure of the defect-engineered MOF. We demonstrate that full-field X-ray absorption near-edge structure computed tomography can help to improve our understanding. This was demonstrated by visualizing the chemical heterogeneity found in defect-engineered HKUST-1 MOF crystals. A non-uniform incorporation and zonation of the defective linker was discovered, leading to the presence of clusters of a second coordination polymer within HKUST-1. The former is suggested to be responsible, in part, for altered MOF properties; thereby, advocating for a spatio-chemically resolved characterization of MOFs.

7.
Angew Chem Int Ed Engl ; 59(10): 3922-3927, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31889397

RESUMO

Ni contamination from crude oil in the fluid catalytic cracking (FCC) process is one of the primary sources of catalyst deactivation, thereby promoting dehydrogenation-hydrogenation and speeding up coke growth. Herein, single-particle X-ray fluorescence, diffraction and absorption (µXRF-µXRD-µXAS) tomography is used in combination with confocal fluorescence microscopy (CFM) after thiophene staining to spatially resolve Ni interaction with catalyst components and study zeolite degradation, including the processes of dealumination and Brønsted acid sites distribution changes. The comparison between a Ni-lean particle, exposed to hydrotreated feedstock, and a Ni-rich one, exposed to non-hydrotreated feedstock, reveals a preferential interaction of Ni, found in co-localization with Fe, with the γ-Al2 O3 matrix, leading to the formation of spinel-type hotspots. Although both particles show similar surface zeolite degradation, the Ni-rich particle displays higher dealumination and a clear Brønsted acidity drop.

8.
Environ Sci Technol ; 53(16): 9915-9925, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31317743

RESUMO

Metaschoepite is commonly found in U-contaminated environments and metaschoepite-bearing wastes may be managed via shallow or deep disposal. Understanding metaschoepite dissolution and tracking the fate of any liberated U is thus important. Here, discrete horizons of metaschoepite (UO3·nH2O) particles were emplaced in flowing sediment/groundwater columns representative of the UK Sellafield Ltd. site. The column systems either remained oxic or became anoxic due to electron donor additions, and the columns were sacrificed after 6- and 12-months for analysis. Solution chemistry, extractions, and bulk and micro/nano-focus X-ray spectroscopies were used to track changes in U distribution and behavior. In the oxic columns, U migration was extensive, with UO22+ identified in effluents after 6-months of reaction using fluorescence spectroscopy. Unusually, in the electron-donor amended columns, during microbially mediated sulfate reduction, significant amounts of UO2-like colloids (>60% of the added U) were found in the effluents using TEM. XAS analysis of the U remaining associated with the reduced sediments confirmed the presence of trace U(VI), noncrystalline U(IV), and biogenic UO2, with UO2 becoming more dominant with time. This study highlights the potential for U(IV) colloid production from U(VI) solids under reducing conditions and the complexity of U biogeochemistry in dynamic systems.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Oxirredução , Solubilidade
9.
Appl Opt ; 57(30): 9032-9039, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30461891

RESUMO

Macromolecular crystallography often requires focused high-intensity x-ray beams for solving challenging protein structures from micrometer-sized crystals using current synchrotron radiation sources. The design of optical focusing schemes for hard x-rays showing high efficiency and flexibility in beam size is therefore continuously pursued. Here, we present an innovative solution based on a two-stage demagnification of the undulator source for photon energies from 6 keV to 19 keV, commissioned at the X10SA beamline of the Swiss Light Source, where a secondary source is imaged by two crossed silicon kinoform x-ray diffractive lenses with 75 nm outermost zone width. A source-size limited spot with a size of 4.8 µm×1.7 µm(h×v,FWHM) and flux of 7.5×1010 photons/s at 12.4 keV is demonstrated at the sample position.

10.
Proc Natl Acad Sci U S A ; 112(42): 12922-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438842

RESUMO

Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.


Assuntos
Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Análise Espectral/métodos , Cinética , Ligantes
11.
Nat Methods ; 11(4): 417-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584193

RESUMO

Mass cytometry enables high-dimensional, single-cell analysis of cell type and state. In mass cytometry, rare earth metals are used as reporters on antibodies. Analysis of metal abundances using the mass cytometer allows determination of marker expression in individual cells. Mass cytometry has previously been applied only to cell suspensions. To gain spatial information, we have coupled immunohistochemical and immunocytochemical methods with high-resolution laser ablation to CyTOF mass cytometry. This approach enables the simultaneous imaging of 32 proteins and protein modifications at subcellular resolution; with the availability of additional isotopes, measurement of over 100 markers will be possible. We applied imaging mass cytometry to human breast cancer samples, allowing delineation of cell subpopulations and cell-cell interactions and highlighting tumor heterogeneity. Imaging mass cytometry complements existing imaging approaches. It will enable basic studies of tissue heterogeneity and function and support the transition of medicine toward individualized molecularly targeted diagnosis and therapies.


Assuntos
Neoplasias da Mama/metabolismo , Citometria por Imagem/métodos , Proteínas de Neoplasias/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteínas de Neoplasias/genética
12.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732146

RESUMO

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Zinco/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Medicago truncatula/genética , Modelos Biológicos , Fenótipo , Proteínas de Plantas/genética , Interferência de RNA , Nódulos Radiculares de Plantas/genética , Frações Subcelulares/metabolismo
13.
Environ Sci Technol ; 51(14): 7892-7902, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28558201

RESUMO

Plutonium plays an important role within nuclear waste materials because of its long half-life and high radiotoxicity. The aim of this study was to investigate with high spatial resolution the reactivity of the more oxidized forms of Pu(V,VI) within Opalinus Clay (OPA) rock, a heterogeneous, natural argillaceous rock considered as a potential repository host. A combination of synchrotron based X-ray microprobe and bulk techniques was used to study the spatial distribution and molecular speciation of Pu within OPA after diffusion and sorption processes. Microscopic chemical images revealed a pronounced impact of geochemical heterogeneities concerning the reactivity of the natural barrier material. Spatially resolved X-ray absorption spectroscopy documented a reduction of the highly soluble Pu(V,VI) to the less mobile Pu(IV) within the argillaceous rock material, while bulk investigations showed second-shell scattering contributions, indicating an inner-sphere sorption of Pu on OPA components. Microdiffraction imaging identified the clay mineral kaolinite to play a key role in the immobilization of the reduced Pu. The findings provide strong evidence that reduction and immobilization do not occur as linked processes on a single reactive phase but as decoupled, subsequent, and spatially separated reactions involving different phases of the OPA.


Assuntos
Silicatos de Alumínio/química , Plutônio/química , Resíduos Radioativos , Argila , Síncrotrons
14.
Chimia (Aarau) ; 71(11): 768-772, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29179801

RESUMO

We review our recent results on the implementation of picosecond (ps) X-ray absorption spectroscopy to probe the electronic and geometric structure of centres formed by photoexcitation of solar materials such as TiO2 polymorphs and inorganic Cs-based perovskites. The results show electron localization at Ti defects in TiO2 anatase and rutile and small hole polaron formation in the valence band of CsPbBr3, all within 80 ps. This method is promising for the study of the ultrafast time scales of such processes, especially with the advent of the Swiss X-ray Free Electron Laser (SwissFEL).

15.
Angew Chem Int Ed Engl ; 56(45): 14031-14035, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28981203

RESUMO

Fluid catalytic cracking is a chemical conversion process of industrial scale. This process, utilizing porous catalysts composed of clay and zeolite, converts heavy crude-oil fractions into transportation fuel and petrochemical feedstocks. Among other factors iron-rich reactor and feedstream impurities cause these catalyst particles to permanently deactivate. Herein, we report tomographic X-ray absorption spectroscopy measurements that reveal the presence of dissimilar iron impurities of specific localization within a single deactivated particle. Whereas the iron natural to clay in the composite seems to be unaffected by operation, exterior-facing and feedstream-introduced iron was found in two forms. Those being minute quantities of ferrous oxide, located near regions of increased porosity, and impurities rich in Fe3+ , preferentially located in the outer dense part of the particle and suggested to contribute to the formation of an isolating amorphous silica alumina envelope.

16.
Anal Chem ; 87(16): 8250-8, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26122331

RESUMO

Low-dispersion laser ablation (LA) has been combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) to provide full-spectrum elemental imaging at high lateral resolution and fast image-acquisition speeds. The low-dispersion LA cell reported here is capable of delivering 99% of the total LA signal within 9 ms, and the prototype TOFMS instrument enables simultaneous and representative determination of all elemental ions from these fast-transient ablation events. This fast ablated-aerosol transport eliminates the effects of pulse-to-pulse mixing at laser-pulse repetition rates up to 100 Hz. Additionally, by boosting the instantaneous concentration of LA aerosol into the ICP with the use of a low-dispersion ablation cell, signal-to-noise (S/N) ratios, and thus limits of detection (LODs), are improved for all measured isotopes; the lowest LODs are in the single digit parts per million for single-shot LA signal from a 10-µm diameter laser spot. Significantly, high-sensitivity, multielemental and single-shot-resolved detection enables the use of small LA spot sizes to improve lateral resolution and the development of single-shot quantitative imaging, while also maintaining fast image-acquisition speeds. Here, we demonstrate simultaneous elemental imaging of major and minor constituents in an Opalinus clay-rock sample at a 1.5 µm laser-spot diameter and quantitative imaging of a multidomain Pallasite meteorite at a 10 µm LA-spot size.

17.
Anal Chem ; 87(16): 8259-67, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26185891

RESUMO

Here we describe the capabilities of laser-ablation coupled to inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) for high-speed, high-resolution, quantitative three-dimensional (3D) multielemental imaging. The basic operating principles of this instrumental setup and a verification of 3D quantitative elemental imaging are provided. To demonstrate the potential of 3D LA-ICP-TOFMS imaging, high-resolution multielement images of a cesium-infiltrated Opalinus clay rock were recorded using LA with a laser-spot diameter of 5 µm coupled to ICP-TOFMS. Quantification of elements ablated from each individual laser pulse was carried out by 100% mass normalization, and the 3D elemental concentration images generated match well with the expected distribution of elements. After laser-ablation imaging, the sample surface morphology was investigated using confocal microscopy, which showed substantial surface roughness and evidence of matrix-dependent ablation yields. Depth assignment based on ablation yields from heterogeneous materials, such as Opalinus clay rock, will remain a challenge for 3D LA-ICPMS imaging. Nevertheless, this study demonstrates quantitative 3D multielemental imaging of geological samples at a considerably higher image-acquisition speed than previously reported, while also offering high spatial resolution and simultaneous multielemental detection.

18.
Anal Bioanal Chem ; 407(24): 7487-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26253227

RESUMO

Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.


Assuntos
Phycomyces/fisiologia , Vanádio/química , Espectroscopia por Absorção de Raios X/métodos , Análise Espectral Raman
19.
Phys Chem Chem Phys ; 17(36): 23298-302, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26300122

RESUMO

Identifying the intermediate species along a reaction pathway is a first step towards a complete understanding of the reaction mechanism, but often this task is not trivial. There has been a strong on-going debate: which of the three intermediates, the CHI2 radical, the CHI2-I isomer, and the CHI2(+) ion, is the dominant intermediate species formed in the photolysis of iodoform (CHI3)? Herein, by combining time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TR-XAS), we present strong evidence that the CHI2 radical is dominantly formed from the photolysis of CHI3 in methanol at 267 nm within the available time resolution of the techniques (∼20 ps for TRXL and ∼100 ps for TR-XAS). The TRXL measurement, conducted using the time-slicing scheme, detected no CHI2-I isomer within our signal-to-noise ratio, indicating that, if formed, the CHI2-I isomer must be a minor intermediate. The TR-XAS transient spectra measured at the iodine L1 and L3 edges support the same conclusion. The present work demonstrates that the application of these two complementary time-resolved X-ray methods to the same system can provide a detailed understanding of the reaction mechanism.

20.
Opt Express ; 22(14): 16676-85, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090486

RESUMO

A nano-focusing module based on two linear Fresnel zone plates is presented. The zone plates are designed to generate a kinoform phase profile in tilted geometry, thus overcoming the efficiency limitations of binary diffractive structures. Adjustment of the tilt angle enables tuning of the setup for optimal efficiency over a wide range of photon energies, ranging from 5 to 20 keV. Diffraction efficiency of more than 50% was measured for the full module at 8 keV photon energy. A diffraction limited spot size of 100 nm was verified by ptychographic reconstruction for a lens module with a large entrance aperture of 440 µm × 400 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA