Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(10): 1900-1911, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26911675

RESUMO

Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling. The phenotypic overlap of ANO5 myopathies with dysferlin-associated muscular dystrophies has inspired the hypothesis that ANO5, like dysferlin, may be involved in the repair of muscle membranes following injury. Here we show that Ano5-deficient mice have reduced capacity to repair the sarcolemma following laser-induced damage, exhibit delayed regeneration after cardiotoxin injury and suffer from defective myoblast fusion necessary for the proper repair and regeneration of multinucleated myotubes. Together, these data suggest that ANO5 plays an important role in sarcolemmal membrane dynamics. Genbank Mouse Genome Informatics accession no. 3576659.


Assuntos
Canais de Cloreto/genética , Miopatias Distais/genética , Atrofia Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Animais , Anoctaminas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Sarcolema/patologia
2.
Ann Clin Transl Neurol ; 2(3): 256-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25815352

RESUMO

OBJECTIVE: Dysferlinopathies are a family of untreatable muscle disorders caused by mutations in the dysferlin gene. Lack of dysferlin protein results in progressive dystrophy with chronic muscle fiber loss, inflammation, fat replacement, and fibrosis; leading to deteriorating muscle weakness. The objective of this work is to demonstrate efficient and safe restoration of dysferlin expression following gene therapy treatment. METHODS: Traditional gene therapy is restricted by the packaging capacity limit of adeno-associated virus (AAV), however, use of a dual vector strategy allows for delivery of over-sized genes, including dysferlin. The two vector system (AAV.DYSF.DV) packages the dysferlin cDNA utilizing AAV serotype rh.74 through the use of two discrete vectors defined by a 1 kb region of homology. Delivery of AAV.DYSF.DV via intramuscular and vascular delivery routes in dysferlin deficient mice and nonhuman primates was compared for efficiency and safety. RESULTS: Treated muscles were tested for dysferlin expression, overall muscle histology, and ability to repair following injury. High levels of dysferlin overexpression was shown for all muscle groups treated as well as restoration of functional outcome measures (membrane repair ability and diaphragm specific force) to wild-type levels. In primates, strong dysferlin expression was demonstrated with no safety concerns. INTERPRETATION: Treated muscles showed high levels of dysferlin expression with functional restoration with no evidence of toxicity or immune response providing proof of principle for translation to dysferlinopathy patients.

3.
PLoS One ; 7(6): e39233, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720081

RESUMO

The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Proteínas de Membrana/genética , Proteínas Musculares/genética , Recombinação Genética , Disferlina , Humanos
4.
BMC Res Notes ; 1: 3, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18611286

RESUMO

BACKGROUND: Some mutations in the internal regions of exons occur within splicing enhancers and silencers, influencing the pattern of alternative splicing in the corresponding genes. To understand how these sequence changes affect splicing, we created a database of these mutations. FINDINGS: The Alternative Splicing Mutation Database (ASMD) serves as a repository for all exonic mutations not associated with splicing junctions that measurably change the pattern of alternative splicing. In this initial published release (version 1.2), only human sequences are present, but the ASMD will grow to include other organisms, (see Availability and requirements section for the ASMD web address).This relational database allows users to investigate connections between mutations and features of the surrounding sequences, including flanking sequences, RNA secondary structures and strengths of splice junctions. Splicing effects of the mutations are quantified by the relative presence of alternative mRNA isoforms with and without a given mutation. This measure is further categorized by the accuracy of the experimental methods employed. The database currently contains 170 mutations in 66 exons, yet these numbers increase regularly.We developed an algorithm to derive a table of oligonucleotide Splicing Potential (SP) values from the ASMD dataset. We present the SP concept and tools in detail in our corresponding article. CONCLUSION: The current data set demonstrates that mutations affecting splicing are located throughout exons and might be enriched within local RNA secondary structures. Exons from the ASMD have below average splicing junction strength scores, but the difference is small and is judged not to be significant.

5.
BMC Res Notes ; 1: 4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18611287

RESUMO

BACKGROUND: The Alternative Splicing Mutation Database (ASMD) presents a collection of all known mutations inside human exons which affect splicing enhancers and silencers and cause changes in the alternative splicing pattern of the corresponding genes. FINDINGS: An algorithm was developed to derive a Splicing Potential (SP) table from the ASMD information. This table characterizes the influence of each oligonucleotide on the splicing effectiveness of the exon containing it. If the SP value for an oligonucleotide is positive, it promotes exon retention, while negative SP values mean the sequence favors exon skipping. The merit of the SP approach is the ability to separate splicing signals from a wide range of sequence motifs enriched in exonic sequences that are attributed to protein-coding properties and/or translation efficiency. Due to its direct derivation from observed splice site selection, SP has an advantage over other computational approaches for predicting alternative splicing. CONCLUSION: We show that a vast majority of known exonic splicing enhancers have highly positive cumulative SP values, while known splicing silencers have core motifs with strongly negative cumulative SP values. Our approach allows for computation of the cumulative SP value of any sequence segment and, thus, gives researchers the ability to measure the possible contribution of any sequence to the pattern of splicing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA