Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 42(14): e111790, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211968

RESUMO

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Fosfatidilserinas/metabolismo , Axônios/metabolismo , Plasticidade Neuronal , Mamíferos , Proteínas de Membrana/metabolismo
2.
Nat Methods ; 18(10): 1253-1258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594033

RESUMO

Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neuroimagem/métodos , Animais , Astrócitos/metabolismo , Sinalização do Cálcio , Feminino , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Software , Antígenos Thy-1
3.
Cereb Cortex ; 33(21): 10750-10760, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37718159

RESUMO

Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.


Assuntos
Microglia , Neurônios , Camundongos , Animais , Encéfalo , Transdução de Sinais , Sinapses/fisiologia , Receptores de Complemento , Plasticidade Neuronal/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876745

RESUMO

Predators must frequently balance competing approach and defensive behaviors elicited by a moving and potentially dangerous prey. Several brain circuits supporting predation have recently been localized. However, the mechanisms by which these circuits balance the conflict between approach and defense responses remain unknown. Laboratory mice initially show alternating approach and defense responses toward cockroaches, a natural prey, but with repeated exposure become avid hunters. Here, we used in vivo neural activity recording and cell-type specific manipulations in hunting male mice to identify neurons in the lateral hypothalamus and periaqueductal gray that encode and control predatory approach and defense behaviors. We found a subset of GABAergic neurons in lateral hypothalamus that specifically encoded hunting behaviors and whose stimulation triggered predation but not feeding. This population projects to the periaqueductal gray, and stimulation of these projections promoted predation. Neurons in periaqueductal gray encoded both approach and defensive behaviors but only initially when the mouse showed high levels of fear of the prey. Our findings allow us to propose that GABAergic neurons in lateral hypothalamus facilitate predation in part by suppressing defensive responses to prey encoded in the periaqueductal gray. Our results reveal a neural circuit mechanism for controlling the balance between conflicting approach and defensive behaviors elicited by the same stimulus.


Assuntos
Hipotálamo/fisiologia , Comportamento Predatório , Animais , Neurônios GABAérgicos/fisiologia , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais
5.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
6.
Nat Rev Neurosci ; 18(11): 658-670, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28931944

RESUMO

The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.


Assuntos
Encéfalo/fisiologia , Transtornos do Neurodesenvolvimento , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/citologia , Encéfalo/patologia , Humanos , Vias Neurais/citologia , Vias Neurais/fisiologia , Transtornos do Neurodesenvolvimento/patologia , Neuroglia/patologia , Sinapses/patologia
7.
J Neurosci ; 40(48): 9283-9292, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33115925

RESUMO

The ventromedial hypothalamus is a central node of the mammalian predator defense network. Stimulation of this structure in rodents and primates elicits abrupt defensive responses, including flight, freezing, sympathetic activation, and panic, while inhibition reduces defensive responses to predators. The major efferent target of the ventromedial hypothalamus is the dorsal periaqueductal gray (dPAG), and stimulation of this structure also elicits flight, freezing, and sympathetic activation. However, reversible inhibition experiments suggest that the ventromedial hypothalamus and periaqueductal gray play distinct roles in the control of defensive behavior, with the former proposed to encode an internal state necessary for the motivation of defensive responses, while the latter serves as a motor pattern initiator. Here, we used electrophysiological recordings of single units in behaving male mice exposed to a rat to investigate the encoding of predator fear in the dorsomedial division of the ventromedial hypothalamus (VMHdm) and the dPAG. Distinct correlates of threat intensity and motor responses were found in both structures, suggesting a distributed encoding of sensory and motor features in the medial hypothalamic-brainstem instinctive network.SIGNIFICANCE STATEMENT Although behavioral responses to predatory threat are essential for survival, the underlying neuronal circuits remain undefined. Using single unit in vivo electrophysiological recordings in mice, we have identified neuronal populations in the medial hypothalamus and brainstem that encode defensive responses to a rat predator. We found that both structures encode both sensory as well as motor aspects of the behavior although with different kinetics. Our findings provide a framework for understanding how innate sensory cues are processed to elicit adaptive behavioral responses to threat and will help to identify targets for the pharmacological modulation of related pathologic behaviors.


Assuntos
Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Comportamento Predatório , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Sinais (Psicologia) , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Ratos , Sistema Nervoso Simpático/fisiologia
8.
Eur J Neurosci ; 54(6): 6044-6059, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405470

RESUMO

The cerebral cortex is widely accepted to be involved in the control of cognition and the processing of learned information. However, data suggest that it may also have a role in the regulation of innate responses because rodents, cats or primates with surgical removal of cortical regions show excessive aggression and rage elicited by threatening stimuli. Nevertheless, the imprecision and chronic nature of these lesions leave open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we applied a precise, rapid and reversible inhibition approach to examine the contribution of the cerebral cortex to defensive behaviours elicited by a variety of innately aversive stimuli in laboratory mice. Pharmacological treatment of mice carrying the pharmacogenetic inhibitory receptor hM4D selectively in neocortex, archicortex and related dorsal telencephalon-derived structures resulted in the rapid inhibition of cerebral cortex neural activity. Cortical inhibition was associated with a selective increase in defensive behaviours elicited by an aggressive conspecific, a novel prey and a physically stressful stimulus. These findings are consistent with a role for cortex in the acute inhibition of innate defensive behaviours.


Assuntos
Agressão , Hipocampo , Animais , Gatos , Camundongos
9.
J Neurosci ; 38(8): 1915-1925, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29378860

RESUMO

Arousal from sleep in response to CO2 is a critical protective phenomenon. Dysregulation of CO2-induced arousal contributes to morbidity and mortality from prevalent diseases, such as obstructive sleep apnea and sudden infant death syndrome. Despite the critical nature of this protective reflex, the precise mechanism for CO2-induced arousal is unknown. Because CO2 is a major regulator of breathing, prevailing theories suggest that activation of respiratory chemo- and mechano-sensors is required for CO2-induced arousal. However, populations of neurons that are not involved in the regulation of breathing are also chemosensitive. Among these are serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) that comprise a component of the ascending arousal system. We hypothesized that direct stimulation of these neurons with CO2 could cause arousal from sleep independently of enhancing breathing. Dialysis of CO2-rich acidified solution into DRN, but not medullary raphe responsible for modulating breathing, caused arousal from sleep. Arousal was lost in mice with a genetic absence of 5-HT neurons, and with acute pharmacological or optogenetic inactivation of DRN 5-HT neurons. Here we demonstrate that CO2 can cause arousal from sleep directly, without requiring enhancement of breathing, and that chemosensitive 5-HT neurons in the DRN critically mediate this arousal. Better understanding mechanisms underlying this protective reflex may lead to interventions to reduce disease-associated morbidity and mortality.SIGNIFICANCE STATEMENT Although CO2-induced arousal is critical to a number of diseases, the specific mechanism is not well understood. We previously demonstrated that serotonin (5-HT) neurons are important for CO2-induced arousal, as mice without 5-HT neurons do not arouse to CO2 Many have interpreted this to mean that medullary 5-HT neurons that regulate breathing are important in this arousal mechanism. Here we found that direct application of CO2-rich aCSF to the dorsal raphe nucleus, but not the medullary raphe, causes arousal from sleep, and that this arousal was lost with genetic ablation or acute inhibition of 5-HT neurons. We propose that 5-HT neurons in the dorsal raphe nucleus can be activated directly by CO2 to cause arousal independently of respiratory activation.


Assuntos
Nível de Alerta/efeitos dos fármacos , Nível de Alerta/fisiologia , Dióxido de Carbono/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Neurônios Serotoninérgicos/fisiologia , Sono/efeitos dos fármacos , Sono/fisiologia
10.
Nat Rev Neurosci ; 13(9): 651-8, 2012 09.
Artigo em Inglês | MEDLINE | ID: mdl-22850830

RESUMO

Fear is an emotion that has powerful effects on behaviour and physiology across animal species. It is accepted that the amygdala has a central role in processing fear. However, it is less widely appreciated that distinct amygdala outputs and downstream circuits are involved in different types of fear. Data show that fear of painful stimuli, predators and aggressive members of the same species are processed in independent neural circuits that involve the amygdala and downstream hypothalamic and brainstem circuits. Here, we discuss data supporting multiple fear pathways and the implications of this distributed system for understanding and treating fear.


Assuntos
Encéfalo/fisiologia , Medo , Vias Neurais/fisiologia , Animais , Aprendizagem da Esquiva , Encéfalo/anatomia & histologia , Humanos
11.
Learn Mem ; 23(10): 544-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27634145

RESUMO

How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system.


Assuntos
Encéfalo/fisiologia , Medo/fisiologia , Animais , Humanos , Memória/fisiologia , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Roedores
12.
Eur J Neurosci ; 43(11): 1431-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991018

RESUMO

The amygdala has been shown to be essential for the processing of acute and learned fear across animal species. However, the downstream neural circuits that mediate these fear responses differ according to the nature of the threat, with separate pathways having been identified for predator, conspecific and physically harmful threats. In particular, the dorsomedial part of the ventromedial hypothalamus (VHMdm) is critical for the expression of defensive responses to predators. Here, we tested the hypothesis that this circuit also participates in predator fear memory by transient pharmacogenetic inhibition of the VMHdm and its downstream effector, the dorsal periaqueductal grey, during predator fear learning in the mouse. Our data demonstrate that neural activity in the VMHdm is required for both the acquisition and recall of predator fear memory, whereas that of its downstream effector, the dorsal periaqueductal grey, is required only for the acute expression of fear. These findings are consistent with a role for the medial hypothalamus in encoding an internal emotional state of fear.


Assuntos
Medo/fisiologia , Aprendizagem/fisiologia , Rememoração Mental/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia
13.
PLoS One ; 18(2): e0281464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795666

RESUMO

The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.


Assuntos
Formação Reticular Mesencefálica , Substância Cinzenta Periaquedutal , Ratos , Animais , Ratos Wistar , Neurônios/fisiologia , Estimulação Elétrica
14.
Front Comput Neurosci ; 16: 964634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157840

RESUMO

The mouse ventromedial hypothalamus (VMH) is both necessary and sufficient for defensive responses to predator and social threats. Defensive behaviors typically involve cautious approach toward potentially threatening stimuli aimed at obtaining information about the risk involved, followed by sudden avoidance and flight behavior to escape harm. In vivo neural recording studies in mice have identified two major populations of VMH neurons that either increase their firing activity as the animal approaches the threat (called Assessment+ cells) or increase their activity as the animal flees the threat (called Flight+ cells). Interestingly, Assessment+ and Flight+ cells abruptly decrease and increase their firing activity, respectively, at the decision point for flight, creating an escape-related "switch" in functional state. This suggests that the activity of the two cell types in VMH is coordinated and could result from local circuit interactions. Here, we used computational modeling to test if a local inhibitory feedback circuit could give rise to key features of the neural activity seen in VMH during the approach-to-flight transition. Starting from a simple dual-population inhibitory feedback circuit receiving repeated trains of monotonically increasing sensory input to mimic approach to threat, we tested the requirement for balanced sensory input, balanced feedback, short-term synaptic plasticity, rebound excitation, and inhibitory feedback exclusivity to reproduce an abrupt, sensory-thresholded reciprocal firing change that resembles Assessment+ and Flight+ cell activity seen in vivo. Our work demonstrates that a relatively simple local circuit architecture is sufficient for the emergence of firing patterns similar to those seen in vivo and suggests that a reiterative process of experimental and computational work may be a fruitful avenue for better understanding the functional organization of mammalian instinctive behaviors at the circuit level.

15.
Sci Rep ; 12(1): 10213, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715545

RESUMO

Enzymes that facilitate the local deposition of electron dense reaction products have been widely used as labels in electron microscopy (EM) for the identification of synaptic contacts in neural tissue. Peroxidases, in particular, can efficiently metabolize 3,3'-diaminobenzidine tetrahydrochloride hydrate (DAB) to produce precipitates with high contrast under EM following heavy metal staining, and can be genetically encoded to facilitate the labeling of specific cell-types or organelles. Nevertheless, the peroxidase/DAB method has so far not been reported to work in a multiplexed manner in combination with 3D volume EM techniques (e.g. Serial blockface electron microscopy, SBEM; Focused ion beam electron microscopy, FIBSEM) that are favored for the large-scale ultrastructural assessment of synaptic architecture However, a recently described peroxidase with enhanced enzymatic activity (dAPEX2) can efficienty deposit EM-visible DAB products in thick tissue without detergent treatment opening the possibility for the multiplex labeling of genetically defined cell-types in combination with volume EM methods. Here we demonstrate that multiplexed dAPEX2/DAB tagging is compatible with both FIBSEM and SBEM volume EM approaches and use them to map long-range genetically identified synaptic inputs from the anterior cingulate cortex to the periaqueductal gray in the mouse brain.


Assuntos
Peroxidase , Peroxidases , Animais , Camundongos , Microscopia Eletrônica , Organelas , Peroxidases/química , Coloração e Rotulagem
16.
Genomics ; 95(4): 196-202, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20171270

RESUMO

Laboratory mouse strains are known to have emerged from recent interbreeding between individuals of Mus musculus isolated populations. As a result of this breeding history, the collection of polymorphisms observed between laboratory mouse strains is likely to harbor the effects of natural selection between reproductively isolated populations. Until now no study has systematically investigated the consequences of this breeding history on gene evolution. Here we have used a novel, unbiased evolutionary approach to predict the founder origin of laboratory mouse strains and to assess the balance between ancient and newly emerged mutations in the founder subspecies. Our results confirm a contribution from at least four distinct subspecies. Additionally, our method allowed us to identify regions of relaxed selective constraint among laboratory mouse strains. This unique structure of variation is likely to have significant consequences on the use of mouse to find genes underlying phenotypic variation.


Assuntos
Efeito Fundador , Variação Genética , Camundongos/genética , Seleção Genética , Animais , Cruzamento , Evolução Molecular , Especiação Genética , Camundongos Endogâmicos , Mutação/genética , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Endogâmicos , Análise de Sequência de DNA
17.
J Comp Neurol ; 529(13): 3274-3291, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33950531

RESUMO

Perineuronal nets are extracellular glycoprotein structures that have been found on some neurons in the central nervous system and that have been shown to regulate their structural plasticity. Until now work on perineuronal nets has been focused on their role in cortical structures where they are selectively expressed on parvalbumin-positive neurons and are reported to restrict the experience-dependent plasticity of inhibitory afferents. Here, we examined the expression of perineuronal nets subcortically, showing that they are expressed in several discrete structures, including nuclei that comprise the brain network controlling reproductive behaviors (e.g., mounting, lordosis, aggression, and social defense). In particular, perineuronal nets were found in the posterior dorsal division of the medial amygdala, the medial preoptic nucleus, the posterior medial bed nucleus of the stria terminalis, the ventrolateral ventromedial hypothalamus and adjacent tuberal nucleus, and the ventral premammillary nucleus in both the mouse and primate brain. Comparison of perineuronal nets in male and female mice revealed a significant sexually dimorphic expression, with expression found prominently on estrogen receptor expressing neurons in the medial amygdala. These findings suggest that perineuronal nets may be involved in regulating neural plasticity in the mammalian reproductive system.


Assuntos
Encéfalo/metabolismo , Glicoproteínas/biossíntese , Rede Nervosa/metabolismo , Reprodução/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Química Encefálica/fisiologia , Callithrix , Feminino , Glicoproteínas/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Oligodendroglia/química , Oligodendroglia/metabolismo , Imagem Óptica/métodos , Primatas , Roedores , Especificidade da Espécie
18.
Sci Bull (Beijing) ; 66(21): 2238-2250, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654115

RESUMO

During free exploration, the emergence of patterned and sequential behavioral responses to an unknown environment reflects exploration traits and adaptation. However, the behavioral dynamics and neural substrates underlying the exploratory behavior remain poorly understood. We developed computational tools to quantify the exploratory behavior and performed in vivo electrophysiological recordings in a large arena in which mice made sequential excursions into unknown territory. Occupancy entropy was calculated to characterize the cumulative and moment-to-moment behavioral dynamics in explored and unexplored territories. Local field potential analysis revealed that the theta activity in the dorsal hippocampus (dHPC) was highly correlated with the occupancy entropy. Individual dHPC and prefrontal cortex (PFC) oscillatory activities could classify various aspects of free exploration. Initiation of exploration was accompanied by a coordinated decrease and increase in theta activity in PFC and dHPC, respectively. Our results indicate that dHPC and PFC work synergistically in shaping free exploration by modulating exploratory traits during emergence and visits to an unknown environment.


Assuntos
Comportamento Exploratório , Hipocampo , Camundongos , Animais , Hipocampo/fisiologia , Comportamento Exploratório/fisiologia , Córtex Pré-Frontal/fisiologia
19.
Brain Struct Funct ; 226(1): 195-205, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33263778

RESUMO

In rodents, innate and learned fear of predators depends on the medial hypothalamic defensive system, a conserved brain network that lies downstream of the amygdala and promotes avoidance via projections to the periaqueductal gray. Whether this network is involved in primate fear remains unknown. To address this, we provoked flight responses to a predator (moving snake) in the marmoset monkey under laboratory conditions. We combined c-Fos immunolabeling and anterograde/retrograde tracing to map the functional connectivity of the ventromedial hypothalamus, a core node in the medial hypothalamic defensive system. Our findings demonstrate that the ventromedial hypothalamus is recruited by predator exposure in primates and that anatomical connectivity of the rodent and primate medial hypothalamic defensive system are highly conserved.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Medo/fisiologia , Serpentes , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Callithrix , Imuno-Histoquímica , Vias Neurais/metabolismo , Comportamento Predatório
20.
Eur J Neurosci ; 32(1): 18-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20561047

RESUMO

Mice lacking serotonin receptor 1A (Htr1a) display increased anxiety behavior that depends on the expression of the receptor in the forebrain during the third to fifth postnatal weeks. Within the forebrain, Htr1a is prominently expressed in the soma and dendrites of CA1 pyramidal neurons of the hippocampus and these cells undergo rapid dendritic growth and synapse formation during this period. Consistent with a possible role of Htr1a in synaptic maturation, CA1 pyramidal neurons in the knockout mice show increased ramification of oblique dendrites. These findings suggest that Htr1a may shape hippocampal circuits by directly modulating dendritic growth. Here we show that pharmacological blockade of the receptor during the third to fifth postnatal weeks is sufficient to reproduce the increased branching of oblique dendrites seen in knockout mice. Using dissociated hippocampal cultures we demonstrate that serotonin functions through Htr1a to attenuate the motility of dendritic growth cones, reduce their content of filamentous actin and alter their morphology. These findings suggest that serotonin modulates actin cytoskeletal dynamics in hippocampal neurons during a limited developmental period to restrict dendritic growth and achieve a long-term adjustment of neural connectivity.


Assuntos
Actinas/metabolismo , Dendritos , Hipocampo/citologia , Neurônios , Receptor 5-HT1A de Serotonina/metabolismo , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Piperazinas/metabolismo , Piridinas/metabolismo , Receptor 5-HT1A de Serotonina/genética , Antagonistas da Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA