Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Curr Genet ; 68(3-4): 319-342, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35362784

RESUMO

The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.


Assuntos
Etanol , Saccharomyces cerevisiae , Fermentação , Hidrólise , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Nat Rev Genet ; 10(7): 495-505, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19506574

RESUMO

The eukaryotic organelles mitochondrion and plastid originated from eubacterial endosymbionts. Here we propose that, in both cases, prokaryote-to-organelle conversion was driven by the internalization of host-encoded factors progressing from the outer membrane of the endosymbionts towards the intermembrane space, inner membrane and finally the organelle interior. This was made possible by an outside-to-inside establishment in the endosymbionts of host-controlled protein-sorting components, which enabled the gradual integration of organelle functions into the nuclear genome. Such a convergent trajectory for mitochondrion and plastid establishment suggests a novel paradigm for organelle evolution that affects theories of eukaryogenesis.


Assuntos
Células Eucarióticas/fisiologia , Evolução Molecular , Plastídeos/fisiologia , Animais , Humanos , Plantas , Transporte Proteico/fisiologia
3.
Environ Microbiol ; 16(6): 1755-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24373049

RESUMO

Understanding the genetic underpinnings of adaptive traits in microalgae is important for the study of evolution and for applied uses. We used long-term selection under a regime of serial transfers with haploid populations of the green alga Chlamydomonas reinhardtii raised in liquid TAP medium containing 200 mM NaCl. After 1255 generations, evolved salt (ES) populations could grow as rapidly in high salt medium as progenitor cells (progenitor light [PL]). Transcriptome data were analysed to elucidate the basis of salt tolerance in ES cells when compared with PL cells and to cells incubated for 48 h in high salt medium (progenitor salt [PS], the short-term acclimation response). These data demonstrate that evolved and short-term acclimation responses to salt stress differ fundamentally from each other. Progenitor salt cells exhibit well-known responses to salt stress such as reduction in photosynthesis, upregulation of glycerophospholipid signaling, and upregulation of the transcription and translation machinery. In contrast, ES cells show downregulation of genes involved in the stress response and in transcription/translation. Our results suggest that gene-rich mixotrophic lineages such as C. reinhardtii may be able to adapt rapidly to abiotic stress engendered either by a rapidly changing climate or physical vicariance events that isolate populations in stressful environments.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Tolerância ao Sal , Aclimatação , Evolução Biológica , Retículo Endoplasmático/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicerofosfolipídeos/metabolismo , Metabolismo dos Lipídeos/genética , Fotossíntese/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Transcriptoma
4.
Biotechnol Biofuels Bioprod ; 17(1): 63, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730312

RESUMO

BACKGROUND: The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS: We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS: Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.

5.
ACS Synth Biol ; 11(11): 3886-3891, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257021

RESUMO

Most CRISPR/Cas9 applications in yeast rely on a plasmid-based expression of Cas9 and its guide RNA (gRNA) containing a 20-nucleotides (nts) spacer tailored to each genomic target. The lengthy assembly of this customized gRNA requires at least 3-5 days for its precloning in Escherichia coli, purification, validation, and cotransformation with Cas9 into a yeast strain. Here, we constructed a series of 12 EasyGuide plasmids to simplify CRISPR/Cas9 applications in Saccharomyces cerevisiae. The new vectors provide templates for generating PCR fragments that can assemble up to six functional gRNAs directly into yeasts via homologous recombination between the 20-nts spacers. By dispensing precloning in E. coli, yeast in vivo gRNA assembly significantly reduces the CRISPR/Cas9 experimental workload. A highly efficient yeast genome editing procedure, involving PCR amplification of gRNAs and donors, followed by their transformation into a Cas9-expressing strain, can be easily accomplished through a quick protocol.


Assuntos
RNA Guia de Cinetoplastídeos , Saccharomyces cerevisiae , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes/métodos , Plasmídeos/genética
6.
Trends Plant Sci ; 14(1): 13-20, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19042148

RESUMO

The origin of the plastid from a cyanobacterial endosymbiont necessitated the establishment of specialized molecular machines (translocons) to facilitate the import of nuclear-encoded proteins into the organelle. To improve our understanding of the evolution of the translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic, respectively), we critically reassess the prevalent notion that their subunits have a function exclusive to protein import. We propose that many translocon components are multifunctional, conserving ancestral pre-endosymbiotic properties that predate their recruitment into the primitive translocon (putatively composed of subunits Toc34, Toc75 and Tic110 and associated chaperones). Multifunctionality seems to be a hallmark of the Tic complex, in which protein import is integrated with a broad array of plastid processes.


Assuntos
Cloroplastos/metabolismo , Evolução Molecular , Proteínas de Membrana/fisiologia , Proteínas de Plantas/fisiologia , Plantas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Filogenia , Proteínas de Plantas/genética , Subunidades Proteicas/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia
7.
Essays Biochem ; 65(2): 147-161, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34156078

RESUMO

Fuel ethanol is produced by the yeast Saccharomyces cerevisiae mainly from corn starch in the United States and from sugarcane sucrose in Brazil, which together manufacture ∼85% of a global yearly production of 109.8 million m3 (in 2019). While in North America genetically engineered (GE) strains account for ∼80% of the ethanol produced, including strains that express amylases and are engineered to produce higher ethanol yields; in South America, mostly (>90%) non-GE strains are used in ethanol production, primarily as starters in non-aseptic fermentation systems with cell recycling. In spite of intensive research exploring lignocellulosic ethanol (or second generation ethanol), this option still accounts for <1% of global ethanol production. In this mini-review, we describe the main aspects of fuel ethanol production, emphasizing bioprocesses operating in North America and Brazil. We list and describe the main properties of several commercial yeast products (i.e., yeast strains) that are available worldwide to bioethanol producers, including GE strains with their respective genetic modifications. We also discuss recent studies that have started to shed light on the genes and traits that are important for the persistence and dominance of yeast strains in the non-aseptic process in Brazil. While Brazilian bioethanol yeast strains originated from a historical process of domestication for sugarcane fermentation, leading to a unique group with significant economic applications, in U.S.A., guided selection, breeding and genetic engineering approaches have driven the generation of new yeast products for the market.


Assuntos
Saccharomyces cerevisiae , Saccharum , Etanol , Fermentação , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharum/genética
8.
Front Microbiol ; 12: 644089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936002

RESUMO

Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.

9.
Biochem J ; 425(1): 207-14, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19817716

RESUMO

Oxygen-evolving chloroplasts possess their own iron-sulfur cluster assembly proteins including members of the SUF (sulfur mobilization) and the NFU family. Recently, the chloroplast protein HCF101 (high chlorophyll fluorescence 101) has been shown to be essential for the accumulation of the membrane complex Photosystem I and the soluble ferredoxin-thioredoxin reductases, both containing [4Fe-4S] clusters. The protein belongs to the FSC-NTPase ([4Fe-4S]-cluster-containing P-loop NTPase) superfamily, several members of which play a crucial role in Fe/S cluster biosynthesis. Although the C-terminal ISC-binding site, conserved in other members of the FSC-NTPase family, is not present in chloroplast HCF101 homologues using Mössbauer and EPR spectroscopy, we provide evidence that HCF101 binds a [4Fe-4S] cluster. 55Fe incorporation studies of mitochondrially targeted HCF101 in Saccharomyces cerevisiae confirmed the assembly of an Fe/S cluster in HCF101 in an Nfs1-dependent manner. Site-directed mutagenesis identified three HCF101-specific cysteine residues required for assembly and/or stability of the cluster. We further demonstrate that the reconstituted cluster is transiently bound and can be transferred from HCF101 to a [4Fe-4S] apoprotein. Together, our findings suggest that HCF101 may serve as a chloroplast scaffold protein that specifically assembles [4Fe-4S] clusters and transfers them to the chloroplast membrane and soluble target proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oxirredutases/genética , Ligação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrofotometria/métodos
10.
Mol Phylogenet Evol ; 53(1): 202-11, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19398025

RESUMO

The Chromalveolata "supergroup" is a massive assemblage of single-celled and multicellular protists such as ciliates and kelps that remains to be substantiated in molecular trees. Recent multigene analyses place chromalveolates into two major clades, the SAR (Stramenopiles, Alveolata, and Rhizaria) and the Cryptophyta+Haptophyta. Here we determined 69 new sequences from different chromalveolates to study the interrelationships of its constituent phyla. We included in our trees, the novel groups Telonemia and Katablepharidophyta that have previously been described as chromalvoleate allies. The best phylogenetic resolution resulted from a 6-protein (actin, alpha-tubulin, beta-tubulin, cytosolic HSP70, BIP HSP70, HSP90) and a 5-protein (lacking HSP90) alignment that validated the SAR and cryptophyte+haptophyte clades with the inclusion of telonemids in the former and katablepharids in the latter. We assessed the Plastidophila hypothesis that is based on EF2 data and suggest this grouping may be explained by horizontal gene transfers involving the EF2 gene rather than indicating host relationships.


Assuntos
Criptófitas/genética , Filogenia , Criptófitas/classificação , DNA de Algas/genética , DNA Ribossômico/genética , Evolução Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
11.
BMC Evol Biol ; 8: 117, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18433492

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 - 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage. RESULTS: Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus. CONCLUSION: Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).


Assuntos
Cianobactérias/genética , Transferência Genética Horizontal , Genoma Bacteriano , Genomas de Plastídeos , Plastídeos/genética , Rodófitas/genética , Quimera , Cianobactérias/metabolismo , Evolução Molecular , Cadeias de Markov , Método de Monte Carlo , Complexo de Proteína do Fotossistema I/genética , Filogenia , Rodófitas/metabolismo
13.
PLoS One ; 10(3): e0119221, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774528

RESUMO

PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5' termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Recombinação Homóloga , Primers do DNA/genética , Vetores Genéticos , Reação em Cadeia da Polimerase/métodos , Transformação Bacteriana
14.
PLoS One ; 9(3): e92533, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658261

RESUMO

Improving feedstock is critical to facilitate the commercial utilization of algae, in particular in open pond systems where, due to the presence of competitors and pests, high algal growth rates and stress tolerance are beneficial. Here we raised laboratory cultures of the model alga Chlamydomonas reinhardtii under serial dilution to explore the potential of crop improvement using natural selection. The alga was evolved for 1,880 generations in liquid medium under continuous light (EL population). At the end of the experiment, EL cells had a growth rate that was 35% greater than the progenitor population (PL). The removal of acetate from the medium demonstrated that EL growth enhancement largely relied on efficient usage of this organic carbon source. Genome re-sequencing uncovered 1,937 polymorphic DNA regions in the EL population with 149 single nucleotide polymorphisms resulting in amino acid substitutions. Transcriptome analysis showed, in the EL population, significant up regulation of genes involved in protein synthesis, the cell cycle and cellular respiration, whereas the DNA repair pathway and photosynthesis were down regulated. Like other algae, EL cells accumulated neutral lipids under nitrogen depletion. Our work demonstrates transcriptome and genome-wide impacts of natural selection on algal cells and points to a useful strategy for strain improvement.


Assuntos
Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/genética , Seleção Genética , Adaptação Fisiológica/genética , Chlamydomonas reinhardtii/metabolismo , Polimorfismo de Nucleotídeo Único
15.
PLoS One ; 8(7): e67669, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844054

RESUMO

RNAi (RNA interference) relies on the production of small RNAs (sRNAs) from double-stranded RNA and comprises a major pathway in eukaryotes to restrict the propagation of selfish genetic elements. Amplification of the initial RNAi signal by generation of multiple secondary sRNAs from a targeted mRNA is catalyzed by RNA-dependent RNA polymerases (RdRPs). This phenomenon is known as transitivity and is particularly important in plants to limit the spread of viruses. Here we describe, using a genome-wide approach, the distribution of sRNAs in the glaucophyte alga Cyanophora paradoxa. C. paradoxa is a member of the supergroup Plantae (also known as Archaeplastida) that includes red algae, green algae, and plants. The ancient (>1 billion years ago) split of glaucophytes within Plantae suggests that C. paradoxa may be a useful model to learn about the early evolution of RNAi in the supergroup that ultimately gave rise to plants. Using next-generation sequencing and bioinformatic analyses we find that sRNAs in C. paradoxa are preferentially associated with mRNAs, including a large number of transcripts that encode proteins arising from different functional categories. This pattern of exonic sRNAs appears to be a general trend that affects a large fraction of mRNAs in the cell. In several cases we observe that sRNAs have a bias for a specific strand of the mRNA, including many instances of antisense predominance. The genome of C. paradoxa encodes four sequences that are homologous to RdRPs in Arabidopsis thaliana. We discuss the possibility that exonic sRNAs in the glaucophyte may be secondarily derived from mRNAs by the action of RdRPs. If this hypothesis is confirmed, then transitivity may have had an ancient origin in Plantae.


Assuntos
Cyanophora/genética , Éxons , RNA de Plantas , RNA Interferente Pequeno/genética , Análise por Conglomerados , Cyanophora/metabolismo , Perfilação da Expressão Gênica , Fases de Leitura Aberta , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
16.
Science ; 335(6070): 843-7, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22344442

RESUMO

The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.


Assuntos
Cyanophora/genética , Evolução Molecular , Genoma de Planta , Fotossíntese/genética , Evolução Biológica , Cianobactérias/genética , Transferência Genética Horizontal , Genes Bacterianos , Dados de Sequência Molecular , Filogenia , Simbiose
17.
Biol Direct ; 6: 12, 2011 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-21333023

RESUMO

The recognition that mitochondria and plastids are derived from alphaproteobacterial and cyanobacterial endosymbionts, respectively, was one of the greatest advances in modern evolutionary biology. Researchers have yet however to provide detailed cell biological descriptions of how these once free-living prokaryotes were transformed into intracellular organelles. A key area of study in this realm is elucidating the evolution of the molecular machines that control organelle protein topogenesis. Alcock et al. (Science 2010, 327 [5966]:649-650) suggest that evolutionary innovations that established the mitochondrial protein sorting system were driven by the alphaproteobacterial endosymbiont (an "insiders' perspective"). In contrast, here we argue that evolution of mitochondrial and plastid topogenesis may better be understood as an outcome of selective pressures acting on host cell chromosomes (the "outsiders' view").


Assuntos
Evolução Biológica , Mitocôndrias/genética , Plastídeos/genética , Simbiose , Genoma/genética , Modelos Biológicos , Células Procarióticas/metabolismo
18.
Biol Direct ; 5: 53, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20731852

RESUMO

BACKGROUND: Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. PRESENTATION OF THE HYPOTHESIS: We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. TESTING THE HYPOTHESIS: Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation, prokaryotic DNA recombination, and the universality of nuclear-mediated meiotic activities might corroborate the hypothesis that sex and the nucleus evolved to support DNA repair. IMPLICATIONS OF THE HYPOTHESIS: Oxygen tolerance emerges as an important principle to investigate eukaryogenesis. The evolution of eukaryotic complexity might be best understood as a synergic process between key evolutionary innovations, of which meiosis (sex) played a central role. REVIEWERS: This manuscript was reviewed by Eugene V. Koonin, Anthony M. Poole, and Gáspár Jékely.


Assuntos
Evolução Biológica , Células Eucarióticas/metabolismo , Oxigênio/metabolismo , Células Procarióticas/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo
19.
J Biol Chem ; 281(25): 17189-17196, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16617180

RESUMO

Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene, called PHYLLO, consists of a fusion of four previously individual eubacterial genes, menF, menD, menC, and menH, required for the biosynthesis of phylloquinone in photosynthetic cyanobacteria and the respiratory menaquinone in eubacteria. The fact that homologous men genes reside as polycistronic units in eubacterial chromosomes and in plastomes of red algae strongly suggests that PHYLLO derived from a plastid operon during endosymbiosis. The principle architecture of the fused PHYLLO locus is conserved in the nuclear genomes of plants, green algae, and the diatom alga Thalassiosira pseudonana. The latter arose from secondary endosymbiosis of a red algae and a eukaryotic host indicating selective driving forces for maintenance and/or independent generation of the composite gene cluster within the nuclear genomes. Besides, individual menF genes, encoding active isochorismate synthases (ICS), have been established followed by splitting of the essential 3' region of the menF module of PHYLLO only in genomes of higher plants. This resulted in inactivation of the ICS activity encoded by PHYLLO and enabled a metabolic branch from the phylloquinone biosynthetic route to independently regulate the synthesis of salicylic acid required for plant defense. Therefore, gene fusion, duplication, and fission events adapted a eubacterial multienzymatic system to the metabolic requirements of plants.


Assuntos
Proteínas de Plantas/química , Vitamina K 1/metabolismo , Vitamina K 1/farmacologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Arabidopsis/genética , Sequência de Bases , Núcleo Celular/metabolismo , Clorófitas/metabolismo , Evolução Molecular , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Simbiose , Vitamina K 1/química
20.
Curr Microbiol ; 49(4): 267-73, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15386115

RESUMO

The complete nucleotide sequence of the A. brasilense fixA, fixB, fixC, and fixX genes is reported here. Sequence similarities between the protein sequences deduced from fixABCX genes and many electron transfer flavoproteins (ETFs) have been noted. Comparison of the amino acid sequences of both subunits of ETF with the A. brasilense fixA and fixB gene products exhibits an identity of 30%. The amino acid sequence of the other two genes, fixC and fixX, revealed similarity with the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase (ETF-QO). Using site-directed mutagenesis, mutations were introduced in the fixA promoter element of the A. brasilense fixABCX operon and chimeric p fixA-lacZ reporter gene fusions were constructed. The activation of the fixA promoter of A. brasilense is dependent upon the presence of the NifA protein being approximately 7 times less active than the A. brasilense nifH promoter. These results indicate that NifA from Klebsiella pneumoniae activates the fix promoter of A. brasilense and provide further evidence in support of the regulatory model of NifA activation in A. brasilense. Although no specific function has been assigned to the fixABCX gene products they are apparently required for symbiotic nitrogen fixation. An electron-transferring capacity in the nitrogen fixation pathway has been suggested for the fix gene products based on sequence homologies to the ETFs and ETF-QO proteins and by the absence of orthologous electron transfer proteins NifJ and NifF in A. brasilense.


Assuntos
Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Fatores de Transcrição/metabolismo , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Sequência de Bases , Transporte de Elétrons , Flavoproteínas Transferidoras de Elétrons/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA