Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(5): e2304680121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266052

RESUMO

Mechanosensory hair cells of the mature mammalian organ of Corti do not regenerate; consequently, loss of hair cells leads to permanent hearing loss. Although nonmammalian vertebrates can regenerate hair cells from neighboring supporting cells, many humans with severe hearing loss lack both hair cells and supporting cells, with the organ of Corti being replaced by a flat epithelium of nonsensory cells. To determine whether the mature cochlea can produce hair cells in vivo, we reprogrammed nonsensory cells adjacent to the organ of Corti with three hair cell transcription factors: Gfi1, Atoh1, and Pou4f3. We generated numerous hair cell-like cells in nonsensory regions of the cochlea and new hair cells continued to be added over a period of 9 wk. Significantly, cells adjacent to reprogrammed hair cells expressed markers of supporting cells, suggesting that transcription factor reprogramming of nonsensory cochlear cells in adult animals can generate mosaics of sensory cells like those seen in the organ of Corti. Generating such sensory mosaics by reprogramming may represent a potential strategy for hearing restoration in humans.


Assuntos
Surdez , Células Ciliadas Auditivas , Adulto , Animais , Humanos , Fatores de Transcrição/genética , Epitélio , Cóclea , Mamíferos
2.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756587

RESUMO

The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.


Assuntos
Placa Neural , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ectoderma/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição Forkhead/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(33): e2300839120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549271

RESUMO

Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Metilação de DNA , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/metabolismo , Regeneração/genética , Cromatina/metabolismo , Mamíferos/genética
4.
Stem Cells ; 41(1): 26-38, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36153788

RESUMO

The inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.


Assuntos
Orelha Interna , Via de Sinalização Wnt , Animais , Camundongos , Reprodutibilidade dos Testes , Orelha Interna/metabolismo , Diferenciação Celular , Ectoderma/metabolismo , Organoides , Células-Tronco , Regulação da Expressão Gênica no Desenvolvimento
5.
Dev Dyn ; 252(12): 1462-1470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37543988

RESUMO

BACKGROUND: FOXI3 is a forkhead family transcription factor that is expressed in the progenitors of craniofacial placodes, epidermal placodes, and the ectoderm and endoderm of the pharyngeal arch region. Loss of Foxi3 in mice and pathogenic Foxi3 variants in dogs and humans cause a variety of craniofacial defects including absence of the inner ear, severe truncations of the jaw, loss or reduction in external and middle ear structures, and defects in teeth and hair. RESULTS: To allow for the identification, isolation, and lineage tracing of Foxi3-expressing cells in developing mice, we targeted the Foxi3 locus to create Foxi3GFP and Foxi3CreER mice. We show that Foxi3GFP mice faithfully recapitulate the expression pattern of Foxi3 mRNA at all ages examined, and Foxi3CreER mice can trace the derivatives of pharyngeal arch ectoderm and endoderm, the pharyngeal pouches and clefts that separate each arch, and the derivatives of hair and tooth placodes. CONCLUSIONS: Foxi3GFP and Foxi3CreER mice are new tools that will be of use in identifying and manipulating pharyngeal arch ectoderm and endoderm and hair and tooth placodes.


Assuntos
Ectoderma , Endoderma , Humanos , Cães , Animais , Camundongos , Ectoderma/metabolismo , Endoderma/metabolismo , Região Branquial/metabolismo , Cabelo/metabolismo , Epiderme/metabolismo , Fatores de Transcrição Forkhead/genética
6.
J Neurosci ; 42(4): 567-580, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34872929

RESUMO

Astrocytes are the most abundant glial cell in the brain and perform a wide range of tasks that support neuronal function and circuit activities. There is emerging evidence that astrocytes exhibit molecular and cellular heterogeneity; however, whether distinct subpopulations perform these diverse roles remains poorly defined. Here we show that the Lunatic Fringe-GFP (Lfng-GFP) bacteria artificial chromosome mouse line from both sexes specifically labels astrocyte populations within lamina III and IV of the dorsal spinal cord. Transcriptional profiling of Lfng-GFP+ astrocytes revealed unique molecular profiles, featuring an enriched expression of Notch- and Wnt- pathway components. Leveraging CRE-DOG viral tools, we ablated Lfng-GFP+ astrocytes, which decreased neuronal activity in lamina III and IV and impaired mechanosensation associated with light touch. Together, our findings identify Lfng-GFP+ astrocytes as a unique subpopulation that occupies a distinct anatomic location in the spinal cord and directly contributes to neuronal function and sensory responses.SIGNIFICANCE STATEMENT Astrocytes are the most abundant glial cell in the CNS, and their interactions with neurons are essential for brain function. However, understanding the functional diversity of astrocytes has been hindered because of the lack of reporters that mark subpopulations and genetic tools for accessing them. We discovered that the Lfng-GFP reporter mouse labels a laminae-specific subpopulation of astrocytes in the dorsal spinal cord and that ablation of these astrocytes reduces glutamatergic synapses. Further analysis revealed that these astrocytes have a role in maintaining sensory-processing circuity related to light touch.


Assuntos
Astrócitos/química , Astrócitos/fisiologia , Glicosiltransferases/análise , Proteínas de Fluorescência Verde/análise , Percepção/fisiologia , Animais , Feminino , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medula Espinal/química , Medula Espinal/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(24): 13552-13561, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482884

RESUMO

Precise control of organ growth and patterning is executed through a balanced regulation of progenitor self-renewal and differentiation. In the auditory sensory epithelium-the organ of Corti-progenitor cells exit the cell cycle in a coordinated wave between E12.5 and E14.5 before the initiation of sensory receptor cell differentiation, making it a unique system for studying the molecular mechanisms controlling the switch between proliferation and differentiation. Here we identify the Yap/Tead complex as a key regulator of the self-renewal gene network in organ of Corti progenitor cells. We show that Tead transcription factors bind directly to the putative regulatory elements of many stemness- and cell cycle-related genes. We also show that the Tead coactivator protein, Yap, is degraded specifically in the Sox2-positive domain of the cochlear duct, resulting in down-regulation of Tead gene targets. Further, conditional loss of the Yap gene in the inner ear results in the formation of significantly smaller auditory and vestibular sensory epithelia, while conditional overexpression of a constitutively active version of Yap, Yap5SA, is sufficient to prevent cell cycle exit and to prolong sensory tissue growth. We also show that viral gene delivery of Yap5SA in the postnatal inner ear sensory epithelia in vivo drives cell cycle reentry after hair cell loss. Taken together, these data highlight the key role of the Yap/Tead transcription factor complex in maintaining inner ear progenitors during development, and suggest new strategies to induce sensory cell regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Autorrenovação Celular , Órgão Espiral/embriologia , Órgão Espiral/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas , Camundongos , Órgão Espiral/citologia , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
8.
J Allergy Clin Immunol ; 150(6): 1556-1562, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35987349

RESUMO

BACKGROUND: Newborn screening can identify neonatal T-cell lymphopenia through detection of a low number of copies of T-cell receptor excision circles in dried blood spots collected at birth. After a positive screening result, further diagnostic testing is required to determine whether the subject has severe combined immunodeficiency or other causes of T-cell lymphopenia. Even after thorough evaluation, approximately 15% of children with a positive result of newborn screening for T-cell receptor excision circles remain genetically undiagnosed. Identifying the underlying genetic etiology is necessary to guide subsequent clinical management and family planning. OBJECTIVE: We sought to elucidate the genetic basis of patients with T-cell lymphopenia without an apparent genetic diagnosis. METHODS: We used clinical genomic testing as well as functional and immunologic assays to identify and elucidate the genetic and mechanistic basis of T-cell lymphopenia. RESULTS: We report 2 unrelated individuals with nonsevere T-cell lymphopenia and abnormal T-cell receptor excision circles who harbor heterozygous loss-of-function variants in forkhead box I3 transcription factor (FOXI3). CONCLUSION: Our findings support the notion that haploinsufficiency of FOXI3 results in T-cell lymphopenia with variable expressivity and that FOXI3 may be a key modulator of thymus development.


Assuntos
Genômica , Receptores de Antígenos de Linfócitos T , Recém-Nascido , Criança , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
9.
J Neurosci ; 41(34): 7171-7181, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253626

RESUMO

Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.


Assuntos
Astrócitos/fisiologia , Perda Auditiva Neurossensorial/etiologia , Complexo Mediador/deficiência , Estria Vascular/patologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Condicionamento Clássico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Medo , Feminino , Reação de Congelamento Cataléptica , Técnicas de Inativação de Genes , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Complexo Mediador/fisiologia , Camundongos , Especificidade de Órgãos , Emissões Otoacústicas Espontâneas , Distribuição Aleatória , Reflexo de Sobressalto
10.
Dev Biol ; 462(1): 74-84, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147304

RESUMO

The five vestibular organs of the inner ear derive from patches of prosensory cells that express the transcription factor SOX2 and the Notch ligand JAG1. Previous work suggests that JAG1-mediated Notch signaling is both necessary and sufficient for prosensory formation and that the separation of developing prosensory patches is regulated by LMX1a, which antagonizes Notch signaling. We used an inner ear-specific deletion of the Rbpjκ gene in which Notch signaling is progressively lost from the inner ear to show that Notch signaling, is continuously required for the maintenance of prosensory fate. Loss of Notch signaling in prosensory patches causes them to shrink and ultimately disappear. We show this loss of prosensory fate is not due to cell death, but rather to the conversion of prosensory tissue into non-sensory tissue that expresses LMX1a. Notch signaling is therefore likely to stabilize, rather than induce prosensory fate.


Assuntos
Orelha Interna/embriologia , Proteína Jagged-1/metabolismo , Receptores Notch/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas Internas/citologia , Proteína Jagged-1/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Organogênese/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
11.
Annu Rev Neurosci ; 36: 361-81, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23724999

RESUMO

Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Ciliadas Auditivas/fisiologia , Mecanorreceptores/fisiologia , Regeneração/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos
12.
J Allergy Clin Immunol ; 145(1): 358-367.e2, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600545

RESUMO

BACKGROUND: Thymic hypoplasia/aplasia occurs as a part of DiGeorge syndrome, which has several known genetic causes, and with loss-of-function mutations in forkhead box N1 (FOXN1). OBJECTIVE: We sought to determine the cause of selective T-cell lymphopenia with inverted kappa/lambda ratio in several kindreds. METHODS: Patients were identified through newborn screening for severe combined immunodeficiency using the T-cell receptor excision circle assay. Those found to have selective T-cell lymphopenia underwent testing with chromosomal microarray analysis. Three-week-old mice heterozygous for a loss-of-function mutation in forkhead box I3 (FOXI3), a candidate gene within the common deleted region found in patients, were compared with wild-type littermates. Assessments included body and organ weights, flow cytometric analysis of thymocytes and splenocytes, and histologic/transcriptomic analyses of thymic tissue. RESULTS: Five kindreds with similar immunophenotypes that included selective T-cell lymphopenia had overlapping microdeletions at chromosome 2p11.2 that spanned FOXI3 and, in most cases, the immunoglobulin kappa light chain locus. Studies in a mouse knockout strain for FOXI3 revealed smaller body weights and relatively lower thymus weights in heterozygous compared with wild-type animals. Histology and flow cytometry on spleens and thymi from 3-week-old pups for T- and B-cell subsets and epithelial cells did not show any significant qualitative or quantitative differences. Transcriptomic analysis of thymic RNA revealed divergence in global transcriptomic signatures, and Ingenuity Pathway Analysis revealed predicted dysfunction in epithelial adherens junctions. CONCLUSIONS: Microdeletions at chromosome 2p11.2 are associated with T-cell lymphopenia and probable thymic hypoplasia in human subjects, and haploinsufficiency for FOXI3, a candidate gene within the deleted region, is the likely underlying cause.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Síndrome de DiGeorge/genética , Fatores de Transcrição Forkhead/genética , Mutação com Perda de Função , Animais , Cromossomos Humanos Par 2/imunologia , Síndrome de DiGeorge/imunologia , Síndrome de DiGeorge/patologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Timo/imunologia , Timo/patologia
13.
Dev Dyn ; 249(12): 1410-1424, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058336

RESUMO

The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Ossículos da Orelha/crescimento & desenvolvimento , Orelha Média/crescimento & desenvolvimento , Crista Neural/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Quimiocinas/metabolismo , Ossículos da Orelha/metabolismo , Orelha Média/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos
14.
PLoS Genet ; 12(5): e1006054, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27195754

RESUMO

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.


Assuntos
Proteínas de Drosophila/genética , Olho/metabolismo , Cinesinas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Cinesinas/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Poliubiquitina , Proteólise , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Peixe-Zebra/genética
15.
J Neurosci ; 37(36): 8583-8594, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28729444

RESUMO

Atonal homolog 1 (Atoh1) is a basic helix-loop-helix (bHLH) transcription factor that is essential for the genesis, survival, and maturation of a variety of neuronal and non-neuronal cell populations, including those involved in proprioception, interoception, balance, respiration, and hearing. Such diverse functions require fine regulation at the transcriptional and protein levels. Here, we show that serine 193 (S193) is phosphorylated in Atoh1's bHLH domain in vivo Knock-in mice of both sexes bearing a GFP-tagged phospho-dead S193A allele on a null background (Atoh1S193A/lacZ) exhibit mild cerebellar foliation defects, motor impairments, partial pontine nucleus migration defects, cochlear hair cell degeneration, and profound hearing loss. We also found that Atoh1 heterozygous mice of both sexes (Atoh1lacZ/+) have adult-onset deafness. These data indicate that different cell types have different degrees of vulnerability to loss of Atoh1 function and that hypomorphic Atoh1 alleles should be considered in human hearing loss.SIGNIFICANCE STATEMENT The discovery that Atonal homolog 1 (Atoh1) governs the development of the sensory hair cells in the inner ear led to therapeutic efforts to restore these cells in cases of human deafness. Because prior studies of Atoh1-heterozygous mice did not examine or report on hearing loss in mature animals, it has not been clinical practice to sequence ATOH1 in people with deafness. Here, in seeking to understand how phosphorylation of Atoh1 modulates its effects in vivo, we discovered that inner ear hair cells are much more vulnerable to loss of Atoh1 function than other Atoh1-positive cell types and that heterozygous mice actually develop hearing loss late in life. This opens up the possibility that missense mutations in ATOH1 could increase human vulnerability to loss of hair cells because of aging or trauma.


Assuntos
Envelhecimento/genética , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Predisposição Genética para Doença/genética , Células Ciliadas Auditivas/patologia , Perda Auditiva/genética , Transtornos dos Movimentos/genética , Envelhecimento/patologia , Animais , Feminino , Técnicas de Introdução de Genes , Perda Auditiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/patologia , Mutação de Sentido Incorreto/genética , Serina/genética
16.
Development ; 142(22): 3954-63, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450968

RESUMO

Epithelial morphogenesis generates the shape of the tooth crown. This is driven by patterned differentiation of cells into enamel knots, root-forming cervical loops and enamel-forming ameloblasts. Enamel knots are signaling centers that define the positions of cusp tips in a tooth by instructing the adjacent epithelium to fold and proliferate. Here, we show that the forkhead-box transcription factor Foxi3 inhibits formation of enamel knots and cervical loops and thus the differentiation of dental epithelium in mice. Conditional deletion of Foxi3 (Foxi3 cKO) led to fusion of molars with abnormally patterned shallow cusps. Foxi3 was expressed in the epithelium, and its expression was reduced in the enamel knots and cervical loops and in ameloblasts. Bmp4, a known inducer of enamel knots and dental epithelial differentiation, downregulated Foxi3 in wild-type teeth. Using genome-wide gene expression profiling, we showed that in Foxi3 cKO there was an early upregulation of differentiation markers, such as p21, Fgf15 and Sfrp5. Different signaling pathway components that are normally restricted to the enamel knots were expanded in the epithelium, and Sostdc1, a marker of the intercuspal epithelium, was missing. These findings indicated that the activator-inhibitor balance regulating cusp patterning was disrupted in Foxi3 cKO. In addition, early molar bud morphogenesis and, in particular, formation of the suprabasal epithelial cell layer were impaired. We identified keratin 10 as a marker of suprabasal epithelial cells in teeth. Our results suggest that Foxi3 maintains dental epithelial cells in an undifferentiated state and thereby regulates multiple stages of tooth morphogenesis.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Dente Molar/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Coroa do Dente/embriologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Epitélio/metabolismo , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
PLoS Genet ; 11(3): e1005037, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25781991

RESUMO

Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle. New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to proliferate, a phase known as transit amplification. SAG cells eventually come to rest between the ear and hindbrain before terminally differentiating. Regulation of these events is only partially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf secreted by mature SAG neurons exceeds a maximum threshold, serving to terminate specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG development, but how it is coordinated with Fgf is unknown. Here we show that transcription factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebrafish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of the otic vesicle that includes neurogenic precursors. Functional studies were conducted in zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specification and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. However, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Directly blocking either Fgf or Notch caused less dramatic acceleration of SAG development without neuronal death, whereas blocking both pathways mimicked all observed effects of Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling. Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling to control the duration, amount and speed of SAG neural development.


Assuntos
Proteína Morfogenética Óssea 7/genética , Cistos Glanglionares/genética , Neurogênese/genética , Fator de Transcrição AP-2/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Animais , Proteína Morfogenética Óssea 7/biossíntese , Diferenciação Celular/genética , Galinhas , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Cistos Glanglionares/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Fator de Transcrição AP-2/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
18.
Dev Biol ; 409(1): 139-151, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26550799

RESUMO

The inner ear develops from the otic placode, one of the cranial placodes that arise from a region of ectoderm adjacent to the anterior neural plate called the pre-placodal domain. We have identified a Forkhead family transcription factor, Foxi3, that is expressed in the pre-placodal domain and down-regulated when the otic placode is induced. We now show that Foxi3 mutant mice do not form otic placodes as evidenced by expression changes in early molecular markers and the lack of thickened placodal ectoderm, an otic cup or otocyst. Some preplacodal genes downstream of Foxi3-Gata3, Six1 and Eya1-are not expressed in the ectoderm of Foxi3 mutant mice, and the ectoderm exhibits signs of increased apoptosis. We also show that Fgf signals from the hindbrain and cranial mesoderm, which are necessary for otic placode induction, are received by pre-placodal ectoderm in Foxi3 mutants, but do not initiate otic induction. Finally, we show that the epibranchial placodes that develop in close proximity to the otic placode and the mandibular division of the trigeminal ganglion are missing in Foxi3 mutants. Our data suggest that Foxi3 is necessary to prime pre-placodal ectoderm for the correct interpretation of inductive signals for the otic and epibranchial placodes.


Assuntos
Ectoderma/embriologia , Ectoderma/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Animais , Biomarcadores/metabolismo , Regulação para Baixo/genética , Embrião de Mamíferos/metabolismo , Epiderme/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Neurogênese/genética , Fator de Transcrição PAX2/metabolismo , Transdução de Sinais/genética
19.
Dev Biol ; 414(1): 72-84, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27090805

RESUMO

The transcription factor Sox2 is both necessary and sufficient for the generation of sensory regions of the inner ear. It regulates expression of the Notch ligand Jag1 in prosensory progenitors, which signal to neighboring cells to up-regulate Sox2 and sustain prosensory identity. However, the expression pattern of Sox2 in the early inner ear is very broad, suggesting that Sox2-expressing progenitors form a wide variety of cell types in addition to generating the sensory regions of the ear. We used Sox2-CreER mice to follow the fates of Sox2-expressing cells at different stages in ear development. We find that Sox2-expressing cells in the early otocyst give rise to large numbers of non-sensory structures throughout the inner ear, and that Sox2 only becomes a truly prosensory marker at embryonic day (E)11.5. Our fate map reveals the organ of Corti derives from a central domain on the medial side of the otocyst and shows that a significant amount of the organ of Corti derives from a Sox2-negative population in this region.


Assuntos
Orelha Interna/citologia , Células-Tronco Neurais/citologia , Órgão Espiral/embriologia , Fatores de Transcrição SOXB1/análise , Animais , Antígenos de Diferenciação/análise , Linhagem da Célula , Orelha Interna/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Genes Reporter , Imageamento Tridimensional , Proteína Jagged-1/biossíntese , Proteína Jagged-1/genética , Proteínas Luminescentes/análise , Camundongos , Camundongos Transgênicos , Órgão Espiral/citologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia
20.
Stem Cells ; 34(7): 1896-908, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26992132

RESUMO

The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ (HG). Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here, we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary HG marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary HG activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. Stem Cells 2016;34:1896-1908.


Assuntos
Fatores de Transcrição Forkhead/deficiência , Folículo Piloso/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores/metabolismo , Compartimento Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Regeneração/efeitos dos fármacos , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Proteínas Wnt/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA