Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 146(7): 4309-4313, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330249

RESUMO

To date, spectroscopic characterization of porphyrin-based metal organic frameworks (MOFs) has relied almost exclusively on ensemble techniques, which provide only structurally averaged insight into the functional properties of these promising photochemical platforms. This work employs time-resolved pump-probe microscopy to probe ultrafast dynamics in PCN-222 MOF single crystals. The simultaneous high spatial and temporal resolution of the technique enables the correlation of spectroscopic observables to both inter- and intracrystal structural heterogeneity. The pump-probe measurements show that significant differences in the excited state lifetime exist between individual PCN-222 crystals of an ensemble. On a single PCN-222 crystal, differences in excited state lifetime and photoluminescence quantum yield are found to correlate to microscale structural defects introduced at crystallization. Pump probe microscopy also enables the direct measurement of excited state transport. Imaging of exciton transport on individual MOF crystals reveals rapid, but subdiffusive exciton transport which slows on the 10s of ps time scale. Time-averaged exciton diffusion coefficients over the first 200 ps span a range of 0.27 to 1.0 cm2/s, indicating that excited states are rapidly transported through the porphyrin network of PCN-222 before being trapped. Together, these single-particle-resolved measurements provide important new insight into the role played by structural defects on the photochemical functionality of porphyrin-based MOFs.

2.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516971

RESUMO

Time-resolved microscopy is a widely used approach for imaging and quantifying charge and energy transport in functional materials. While it is generally recognized that resolving small diffusion lengths is limited by measurement noise, the impacts of noise have not been systematically assessed or quantified. This article reports modeling efforts to elucidate the impact of noise on optical probes of transport. Excited state population distributions, modeled as Gaussians with additive white noise typical of experimental conditions, are subject to decay and diffusive evolution. Using a conventional composite least-squares fitting algorithm, the resulting diffusion constant estimates are compared with the model input parameter. The results show that heteroscedasticity (i.e., time-varying noise levels), insufficient spatial and/or temporal resolution, and small diffusion lengths relative to the magnitude of noise lead to a surprising degree of imprecision under moderate experimental parameters. Moreover, the compounding influence of low initial contrast and small diffusion length leads to systematic overestimation of diffusion coefficients. Each of these issues is quantitatively analyzed herein, and experimental approaches to mitigate them are proposed. General guidelines for experimentalists to rapidly assess measurement precision are provided, as is an open-source tool for customizable evaluation of noise effects on time-resolved microscopy transport measurements.

3.
Nano Lett ; 20(7): 5050-5056, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520576

RESUMO

Although solution processing methods provide an attractive route toward development of low-cost functional materials, these accessible fabrication approaches can engender high concentrations of microscopic structural defects that are detrimental to performance. In lead halide perovskites, structural disorder derived from solution processing has been implicated as an important determiner of photophysical properties. However, a direct correlation between the functional properties of these materials and the local crystal structure in which non-equilibrium states evolve has remained elusive, in part because structural heterogeneities occur on length scales that defy conventional characterization techniques. To address this knowledge gap, we have combined ultrafast pump-probe microscopy and electron backscattering diffraction to directly correlate charge carrier transport with the local diffraction pattern contrast, an indicator of crystal quality. Spatial correlation of these measurements strongly suggests that even on individual single crystal CsPbBr3 domains, microscopic variability in the crystal quality profoundly impacts the efficiency of charge carrier transport.

4.
Biophys J ; 116(11): 2224-2233, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31109734

RESUMO

The repair of DNA damage requires the ordered recruitment of many different proteins that are responsible for signaling and subsequent repair. A powerful and widely used tool for studying the orchestrated accumulation of these proteins at damage sites is laser microirradiation in live cells, followed by monitoring the accumulation of the fluorescently labeled protein in question. Despite the widespread use of this approach, there exists no rigorous method for characterizing the recruitment process quantitatively. Here, we introduce a diffusion model that explicitly accounts for the unique sizes and shapes of individual nuclei and uses two variables: Deff, the effective coefficient of diffusion, and F, the fraction of mobile protein that accumulates at sites of DNA damage. Our model quantitatively describes the accumulation of three test proteins, poly-ADP-ribose polymerases 1 and 2 (PARP1/2) and histone PARylation factor 1. Deff for PARP1, as derived by our approach, is 6× greater than for PARP2 and in agreement with previous literature reports using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Our data indicate that histone PARylation factor 1 arrives at sites of DNA damage independently of either PARP. Importantly, our model, which can be applied to existing data, allows for the direct comparison of the coefficient of diffusion for any DNA repair protein between different cell types, obtained in different laboratories and by different methods, and also allows for the interrogation of cell-to-cell variability.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Modelos Biológicos , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Linhagem Celular , Difusão , Humanos , Cinética , Camundongos
5.
Opt Express ; 27(22): 31385-31393, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684373

RESUMO

In the high-density excitation limit, as is often probed with ultrafast spectroscopies, spatial and temporal evolution of photogenerated excited states are strongly coupled, giving rise to artifacts that influence experimentally-determined material parameters. The interplay between spatial and temporal degrees of freedom is especially pronounced in pump-probe microscopy, where small laser spot sizes amplify the effects of spatiotemporal coupling on spectroscopic observables. To quantitatively model these effects, a continuum model is developed that accounts for laser spot size as well as nonlinear excited state decay and diffusion. It is shown that effective excitation densities cannot be used to determine quantitatively correct rate constants. Significant error is introduced unless experimental data is fit with a numerical model that accounts for spatial anisotropy in the excitation density. Furthermore, the quantitative determination of material diffusion coefficients is shown to be highly sensitive to experimental parameters.

6.
J Phys Chem A ; 123(40): 8709-8716, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251048

RESUMO

Pump-probe microscopy has recently emerged as an important tool for characterizing the effects of nanoscale chemical and compositional heterogeneity on the optoelectronic properties of material systems. This article describes the development of broadband pump-probe microscopy, which utilizes a high-speed line camera and high repetition rate amplified fiber laser to collect full transient spectra at 30+ kHz and with sub 100 fs temporal resolution. The broadband imaging and spectroscopic capabilities of the technique are demonstrated on individual micron-sized lead halide perovskite domains. Also discussed are several challenges associated with collecting broadband transient spectra from sub-micron sample areas, including the importance of careful design of imaging optics to minimize the effects of spherical and chromatic aberrations, detector considerations, and the importance of spot size effects on absolute signal size.

7.
Nano Lett ; 17(10): 5956-5961, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895747

RESUMO

Surface trap density in silicon nanowires (NWs) plays a key role in the performance of many semiconductor NW-based devices. We use pump-probe microscopy to characterize the surface recombination dynamics on a point-by-point basis in 301 silicon NWs grown using the vapor-liquid-solid (VLS) method. The surface recombination velocity (S), a metric of the surface quality that is directly proportional to trap density, is determined by the relationship S = d/4τ from measurements of the recombination lifetime (τ) and NW diameter (d) at distinct spatial locations in individual NWs. We find that S varies by as much as 2 orders of magnitude between NWs grown at the same time but varies only by a factor of 2 or three within an individual NW. Although we find that, as expected, smaller-diameter NWs exhibit shorter τ, we also find that smaller wires exhibit higher values of S; this indicates that τ is shorter both because of the geometrical effect of smaller d and because of a poorer quality surface. These results highlight the need to consider interwire heterogeneity as well as diameter-dependent surface effects when fabricating NW-based devices.

8.
J Am Chem Soc ; 138(13): 4426-38, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974040

RESUMO

Interfacial electron transfer at titanium dioxide (TiO2) is investigated for a series of surface bound ruthenium-polypyridyl dyes whose metal-to-ligand charge-transfer state (MLCT) energetics are tuned through chemical modification. The 12 complexes are of the form Ru(II)(bpy-A)(L)2(2+), where bpy-A is a bipyridine ligand functionalized with phosphonate groups for surface attachment to TiO2. Functionalization of ancillary bipyridine ligands (L) enables the potential of the excited state Ru(III/)* couple, E(+/)*, in 0.1 M perchloric acid (HClO4(aq)) to be tuned from -0.69 to -1.03 V vs NHE. Each dye is excited by a 200 fs pulse of light in the visible region of the spectrum and probed with a time-delayed supercontiuum pulse (350-800 nm). Decay of the MLCT excited-state absorption at 376 nm is observed without loss of the ground-state bleach, which is a clear signature of electron injection and formation of the oxidized dye. The dye-dependent decays are biphasic with time constants in the 3-30 and 30-500 ps range. The slower injection rate constant for each dye is exponentially distributed relative to E(+/)*. The correlation between the exponentially diminishing density of TiO2 sub-band acceptor levels and injection rate is well described using Marcus-Gerischer theory, with the slower decay components being assigned to injection from the thermally equilibrated state and the faster components corresponding to injection from higher energy states within the (3)MLCT manifold. These results and detailed analyses incorporating molecular photophysics and semiconductor density of states measurements indicate that the multiexponential behavior that is often observed in interfacial injection studies is not due to sample heterogeneity. Rather, this work shows that the kinetic heterogeneity results from competition between excited-state relaxation and injection as the photoexcited dye relaxes through the (3)MLCT manifold to the thermally equilibrated state, underscoring the potential for a simple kinetic model to reproduce the complex kinetic behavior often observed at the interface of mesoporous metal oxide materials.

9.
Opt Express ; 24(18): 20868-80, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607691

RESUMO

With sub-micron spatial resolution and femtosecond temporal resolution, pump probe microscopy provides a powerful spectroscopic probe of complex electronic environments in bulk and nanoscale materials. However, the electronic structure of many materials systems are governed by compositional and morphological heterogeneities on length scales that lie below the diffraction limit. We have recently demonstrated Structured Pump Probe Microscopy (SPPM), which employs a patterned pump excitation field to provide spectroscopic interrogation of sub-diffraction limited sample volumes. Herein, we develop the imaging theory of SPPM in two dimensions to accompany the previously published experimental methodology. We show that regardless of pump and probe wavelengths, a nearly two-fold reduction in spectroscopic probe volume can be achieved. We also examine the limitations of the approach, with a detailed discussion of ringing in the point spread function that can reduce imaging performance.

10.
Nano Lett ; 14(11): 6287-92, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259929

RESUMO

Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump-probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge-carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron-hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge-carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon.

11.
Nano Lett ; 14(6): 3079-87, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24867088

RESUMO

Silicon nanowires incorporating p-type/n-type (p-n) junctions have been introduced as basic building blocks for future nanoscale electronic components. Controlling charge flow through these doped nanostructures is central to their function, yet our understanding of this process is inferred from measurements that average over entire structures or integrate over long times. Here, we have used femtosecond pump-probe microscopy to directly image the dynamics of photogenerated charge carriers in silicon nanowires encoded with p-n junctions along the growth axis. Initially, motion is dictated by carrier-carrier interactions, resulting in diffusive spreading of the neutral electron-hole cloud. Charge separation occurs at longer times as the carrier distribution reaches the edges of the depletion region, leading to a persistent electron population in the n-type region. Time-resolved visualization of the carrier dynamics yields clear, direct information on fundamental drift, diffusion, and recombination processes in these systems, providing a powerful tool for understanding and improving materials for nanotechnology.

12.
Nano Lett ; 13(12): 6281-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274858

RESUMO

Si nanowires (NWs) have been widely explored as a platform for photonic and electronic technologies. Here, we report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes, including nanorods, sinusoids, bowties, tapers, nanogaps, and gratings, along the NW growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enabled morphological features as small as 10 nm to be patterned over wires more than 50 µm in length. This capability fundamentally expands the set of technologies that can be realized with Si NWs, and as proof-of-concept, we demonstrate two distinct applications. First, nanogap-encoded NWs were used as templates for Noble metals, yielding plasmonic structures with tunable resonances for surface-enhanced Raman imaging. Second, core/shell Si/SiO2 nanorods were integrated into electronic devices that exhibit resistive switching, enabling nonvolatile memory storage. Moving beyond these initial examples, we envision this method will become a generic route to encode new functionality in semiconductor NWs.


Assuntos
Eletrônica , Nanofios/química , Semicondutores , Silício/química , Nanotubos/química , Dióxido de Silício/química , Análise Espectral Raman , Propriedades de Superfície
13.
Nano Lett ; 13(3): 1336-40, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23421654

RESUMO

We have developed a pump-probe microscope capable of exciting a single semiconductor nanostructure in one location and probing it in another with both high spatial and temporal resolution. Experiments performed on Si nanowires enable a direct visualization of the charge cloud produced by photoexcitation at a localized spot as it spreads along the nanowire axis. The time-resolved images show clear evidence of rapid diffusional spreading and recombination of the free carriers, which is consistent with ambipolar diffusion and a surface recombination velocity of ∼10(4) cm/s. The free carrier dynamics are followed by trap carrier migration on slower time scales.

14.
ACS Appl Mater Interfaces ; 15(12): 15478-15485, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926802

RESUMO

Graphitic carbon nitride (gCN) is a promising organic platform for driving light-activated charge-transfer reactions in a number of valuable photocatalytic cycles. A primary limitation of gCN as a photocatalyst is its short excited-state lifetime, which is mediated by a high density of trap and defect sites that result in rapid excited-state decay and low photocatalytic efficiency. To enhance the catalytic activity, gCN is often functionalized with a metal co-catalyst; however, the mechanism by which metal co-catalysts enhance the reactivity has not been clearly established. In this work, the excited-state dynamics of gCN and silver-modified gCN are compared using ultrafast transient absorption and time-resolved photoluminescence spectroscopies. In silver-modified gCN, an ultrafast spectral shift in the silver plasmon resonance provides direct spectral evidence of electron transfer from gCN to the silver nanoparticles. The electron-transfer rate is competitive with other non-radiative relaxation pathways, with electron-transfer yields approaching 50%, thus providing an effective strategy for mitigating losses associated with defects and trap sites.

15.
Opt Express ; 20(19): 20908-19, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037215

RESUMO

Two-dimensional Fourier transform spectra of a three level model system are simulated using a non-perturbative density matrix formalism. The electric field distortions resultant from using pixelated pulse shaping devices to produce phase-locked pulse pairs are modeled and the effects on the recovered spectra are examined. To minimize spectral distortions, a temporal filtering scheme is employed which eliminates contributions from spurious sample polarizations.


Assuntos
Modelos Químicos , Fenômenos Ópticos , Óptica e Fotônica/instrumentação , Eletricidade , Espectroscopia de Infravermelho com Transformada de Fourier
16.
ACS Omega ; 6(50): 34850-34856, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963968

RESUMO

The concentration of nitrate in natural surface waters by agricultural runoff remains a challenging problem in environmental chemistry. One promising denitrification strategy is to utilize photocatalysts, whose light-driven excited states are capable of reducing nitrate to nitrogen gas. We have synthesized and characterized pristine and silver-loaded graphitic carbon nitrides and assessed their activity for photocatalytic nitrate reduction at neutral pH. While nitrate reduction does occur on the pristine material, the silver cocatalyst greatly enhances product yields. Kinetic studies performed in batch photoreactors under both UV and visible excitation suggest that nitrate reduction to produce aqueous nitrite, ammonium, and nitrogen gas proceeds via a cooperative water reduction on the silver metal domains to produce adsorbed H atoms. By varying the percentage of silver loading onto the g-C3N4, the density of metal domains can be adjusted, which in turn tunes the reduction selectivity toward various products.

17.
Phys Rev Lett ; 105(25): 257403, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231627

RESUMO

Polycrystalline tetracene films have been explored using weak ∼ 30 fs visible laser pulses that excite the lowest singlet exciton as well as coherent vibrational motion. Transient difference spectra show a triplet absorption which arises following singlet fission (SF) and persists for 1.6 ns without decay. Adaptive pulse shaping identifies multipulse optimal fields which maximize this absorption feature by ∼ 20%. These are comprised of subpulses separated by time delays well correlated with the period of lattice vibrations suggesting such modes control the yield of SF photochemistry.

18.
J Chem Phys ; 129(10): 104304, 2008 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19044910

RESUMO

Rotational spectra have been observed for (16)OH-(16)OH(2), (16)OH-(18)OH(2), (18)OH-(16)OH(2), and (18)OH-(18)OH(2) with complete resolution of the nuclear magnetic hyperfine structure from the OH and water protons. Transition frequencies have been analyzed for each isotopic form using the model of Marshall and Lester [J. Chem. Phys. 121, 3019 (2004)], which accounts for partial quenching of the OH orbital angular momentum and the decoupling of the electronic spin from the OH molecular axis. The analysis accounts for both the ground ((2)A(')) and first electronically excited ((2)A(")) states of the system, which correspond roughly to occupancy by the odd electron in the p(y) and p(x) orbitals, respectively (where p(y) is in the mirror plane of the complex and p(x) is perpendicular to p(y) and the OH bond axis). The spectroscopic measurements yield a parameter, rho, which is equal to the vibrationally averaged (2)A(')-(2)A(") energy separation that would be obtained if spin-orbit coupling and rotation were absent. For the parent species, rho = -146.560 27(9) cm(-1). (18)O substitution on the water increases /rho/ by 0.105 29(10) cm(-1), while substitution on the OH decreases /rho/ by 0.068 64(11) cm(-1). In the OH-OH(2) complex, the observed value of rho implies an energy spacing between the rotationless levels of the (2)A(') and (2)A(") states of 203.76 cm(-1). Ab initio calculations have been performed with quadratic configuration interaction with single and double excitations (QCISD), as well as multireference configuration interaction (MRCI), both with and without the inclusion of spin-orbit coupling. The MRCI calculations with spin-orbit coupling perform the best, giving a value of 171 cm(-1) for the (2)A(')-(2)A(") energy spacing at the equilibrium geometry. Calculations along the large-amplitude bending coordinates of the OH and OH(2) moieties within the complex are presented and are shown to be consistent with a vibrational averaging effect as the main cause of the observed isotopic sensitivity of rho.

19.
J Phys Chem Lett ; 9(11): 2808-2813, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749229

RESUMO

While carrier mobility is a practical and commonly cited measure of transport, it conflates the effects of two more fundamental material properties: the effective mass and mean scattering time of charge carriers. This Letter describes the correlation of two ultrafast imaging techniques to disentangle the effect of each on carrier transport in lead halide perovskites. Two materials are compared: methylammonium lead tri-iodide (MAPbI3) and cesium lead bromide diiodide (CsPbBrI2). By correlating photoinduced changes to the refractive index with a direct measure of carrier diffusion, both the carrier optical mass and mean scattering time are uniquely determined on microscopic length scales. These results show that the factor of 4 lower mobility of CsPbBrI2 is due not to differing optical masses of charge carriers, which are measured to be similar in CsPbBrI2 and MAPbI3, but rather to a difference in mean carrier scattering time. The scope and limitations of the approach are discussed.

20.
Opt Express ; 15(25): 16681-9, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19550954

RESUMO

This letter reports a straightforward means of collecting two-dimensional electronic (2D-E) spectra using optical tools common to many research groups involved in ultrafast spectroscopy and quantum control. In our method a femtosecond pulse shaper is used to generate a pair of phase stable collinear laser pulses which are then incident on a gas or liquid sample. The pulse pair is followed by an ultrashort probe pulse that is spectrally resolved. The delay between the collinear pulses is incremented using phase and amplitude shaping and a 2D-E spectrum is generated following Fourier transformation. The partially collinear beam geometry results in perfectly phased absorptive spectra without phase twist. Our approach is much simpler to implement than standard non-collinear beam geometries, which are challenging to phase stabilize and require complicated calibrations. Using pulse shaping, many new experiments are now also possible in both 2D-E spectroscopy and coherent control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA