Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363928

RESUMO

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Assuntos
Ventrículos do Coração , Coração , Humanos , Coração/fisiologia , Átrios do Coração , Modelos Cardiovasculares
2.
Comput Methods Appl Mech Eng ; 394: 114887, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35432634

RESUMO

Fiber-reinforced soft biological tissues are typically modeled as hyperelastic, anisotropic, and nearly incompressible materials. To enforce incompressibility a multiplicative split of the deformation gradient into a volumetric and an isochoric part is a very common approach. However, the finite element analysis of such problems often suffers from severe volumetric locking effects and numerical instabilities. In this paper, we present novel methods to overcome volumetric locking phenomena for using stabilized P1-P1 elements. We introduce different stabilization techniques and demonstrate the high robustness and computational efficiency of the chosen methods. In two benchmark problems from the literature as well as an advanced application to cardiac electromechanics, we compare the approach to standard linear elements and show the accuracy and versatility of the methods to simulate anisotropic, nearly and fully incompressible materials. We demonstrate the potential of this numerical framework to accelerate accurate simulations of biological tissues to the extent of enabling patient-specific parameterization studies, where numerous forward simulations are required.

3.
J Electrocardiol ; 66: 86-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33836460

RESUMO

INTRODUCTION: Acute myocardial ischemia occurs when coronary perfusion to the heart is inadequate, which can perturb the highly organized electrical activation of the heart and can result in adverse cardiac events including sudden cardiac death. Ischemia is known to influence the ST and repolarization phases of the ECG, but it also has a marked effect on propagation (QRS); however, studies investigating propagation during ischemia have been limited. METHODS: We estimated conduction velocity (CV) and ischemic stress prior to and throughout 20 episodes of experimentally induced ischemia in order to quantify the progression and correlation of volumetric conduction changes during ischemia. To estimate volumetric CV, we 1) reconstructed the activation wavefront; 2) calculated the elementwise gradient to approximate propagation direction; and 3) estimated conduction speed (CS) with an inverse-gradient technique. RESULTS: We found that acute ischemia induces significant conduction slowing, reducing the global median speed by 20 cm/s. We observed a biphasic response in CS (acceleration then deceleration) early in some ischemic episodes. Furthermore, we noted a high temporal correlation between ST-segment changes and CS slowing; however, when comparing these changes over space, we found only moderate correlation (corr. = 0.60). DISCUSSION: This study is the first to report volumetric CS changes (acceleration and slowing) during episodes of acute ischemia in the whole heart. We showed that while CS changes progress in a similar time course to ischemic stress (measured by ST-segment shifts), the spatial overlap is complex and variable, showing extreme conduction slowing both in and around regions experiencing severe ischemia.


Assuntos
Sistema de Condução Cardíaco , Isquemia Miocárdica , Arritmias Cardíacas , Eletrocardiografia , Coração , Humanos
4.
Comput Methods Appl Mech Eng ; 386: 114092, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34630765

RESUMO

Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.

5.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190342, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448067

RESUMO

Computer models of left ventricular (LV) electro-mechanics (EM) show promise as a tool for assessing the impact of increased afterload upon LV performance. However, the identification of unique afterload model parameters and the personalization of EM LV models remains challenging due to significant clinical input uncertainties. Here, we personalized a virtual cohort of N = 17 EM LV models under pressure overload conditions. A global-local optimizer was developed to uniquely identify parameters of a three-element Windkessel (Wk3) afterload model. The sensitivity of Wk3 parameters to input uncertainty and of the EM LV model to Wk3 parameter uncertainty was analysed. The optimizer uniquely identified Wk3 parameters, and outputs of the personalized EM LV models showed close agreement with clinical data in all cases. Sensitivity analysis revealed a strong dependence of Wk3 parameters on input uncertainty. However, this had limited impact on outputs of EM LV models. A unique identification of Wk3 parameters from clinical data appears feasible, but it is sensitive to input uncertainty, thus depending on accurate invasive measurements. By contrast, the EM LV model outputs were less sensitive, with errors of less than 8.14% for input data errors of 10%, which is within the bounds of clinical data uncertainty. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.

6.
Comput Methods Programs Biomed ; 251: 108189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728827

RESUMO

BACKGROUND AND OBJECTIVE: Simulation of cardiac electrophysiology (CEP) is an important research tool that is increasingly being adopted in industrial and clinical applications. Typical workflows for CEP simulation consist of a sequence of processing stages starting with building an anatomical model and then calibrating its electrophysiological properties to match observable data. While the calibration stages are common and generalizable, most CEP studies re-implement these steps in complex and highly variable workflows. This lack of standardization renders the execution of computational CEP studies in an efficient, robust, and reproducible manner a significant challenge. Here, we propose ForCEPSS as an efficient and robust, yet flexible, software framework for standardizing CEP simulation studies. METHODS AND RESULTS: Key processing stages of CEP simulation studies are identified and implemented in a standardized workflow that builds on openCARP1 Plank et al. (2021) and the Python-based carputils2 framework. Stages include (i) the definition and initialization of action potential phenotypes, (ii) the tissue scale calibration of conduction properties, (iii) the functional initialization to approximate a limit cycle corresponding to the dynamic reference state according to an experimental protocol, and, (iv) the execution of the CEP study where the electrophysiological response to a perturbation of the limit cycle is probed. As an exemplar application, we employ ForCEPSS to prepare a CEP study according to the Virtual Arrhythmia Risk Prediction protocol used for investigating the arrhythmogenic risk of developing infarct-related ventricular tachycardia (VT) in ischemic cardiomyopathy patients. We demonstrate that ForCEPSS enables a fully automated execution of all stages of this complex protocol. CONCLUSION: ForCEPSS offers a novel comprehensive, standardized, and automated CEP simulation workflow. The high degree of automation accelerates the execution of CEP simulation studies, reduces errors, improves robustness, and makes CEP studies reproducible. Verification of simulation studies within the CEP modeling community is thus possible. As such, ForCEPSS makes an important contribution towards increasing transparency, standardization, and reproducibility of in silico CEP experiments.


Assuntos
Potenciais de Ação , Simulação por Computador , Software , Humanos , Arritmias Cardíacas/fisiopatologia , Eletrofisiologia Cardíaca , Calibragem , Modelos Cardiovasculares , Coração/fisiologia
7.
Comput Methods Programs Biomed ; 254: 108299, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959599

RESUMO

BACKGROUND AND OBJECTIVE: Data from electro-anatomical mapping (EAM) systems are playing an increasingly important role in computational modeling studies for the patient-specific calibration of digital twin models. However, data exported from commercial EAM systems are challenging to access and parse. Converting to data formats that are easily amenable to be viewed and analyzed with commonly used cardiac simulation software tools such as openCARP remains challenging. We therefore developed an open-source platform, pyCEPS, for parsing and converting clinical EAM data conveniently to standard formats widely adopted within the cardiac modeling community. METHODS AND RESULTS: pyCEPS is an open-source Python-based platform providing the following functions: (i) access and interrogate the EAM data exported from clinical mapping systems; (ii) efficient browsing of EAM data to preview mapping procedures, electrograms (EGMs), and electro-cardiograms (ECGs); (iii) conversion to modeling formats according to the openCARP standard, to be amenable to analysis with standard tools and advanced workflows as used for in silico EAM data. Documentation and training material to facilitate access to this complementary research tool for new users is provided. We describe the technological underpinnings and demonstrate the capabilities of pyCEPS first, and showcase its use in an exemplary modeling application where we use clinical imaging data to build a patient-specific anatomical model. CONCLUSION: With pyCEPS we offer an open-source framework for accessing EAM data, and converting these to cardiac modeling standard formats. pyCEPS provides the core functionality needed to integrate EAM data in cardiac modeling research. We detail how pyCEPS could be integrated into model calibration workflows facilitating the calibration of a computational model based on EAM data.


Assuntos
Simulação por Computador , Software , Humanos , Calibragem , Eletrocardiografia , Modelos Cardiovasculares , Coração/fisiologia , Eletrofisiologia Cardíaca
8.
IEEE Trans Biomed Eng ; 70(2): 511-522, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921339

RESUMO

OBJECTIVE: The bidomain model and the finite element method are an established standard to mathematically describe cardiac electrophysiology, but are both suboptimal choices for fast and large-scale simulations due to high computational costs. We investigate to what extent simplified approaches for propagation models (monodomain, reaction-Eikonal and Eikonal) and forward calculation (boundary element and infinite volume conductor) deliver markedly accelerated, yet physiologically accurate simulation results in atrial electrophysiology. METHODS: We compared action potential durations, local activation times (LATs), and electrocardiograms (ECGs) for sinus rhythm simulations on healthy and fibrotically infiltrated atrial models. RESULTS: All simplified model solutions yielded LATs and P waves in accurate accordance with the bidomain results. Only for the Eikonal model with pre-computed action potential templates shifted in time to derive transmembrane voltages, repolarization behavior notably deviated from the bidomain results. ECGs calculated with the boundary element method were characterized by correlation coefficients 0.9 compared to the finite element method. The infinite volume conductor method led to lower correlation coefficients caused predominantly by systematic overestimations of P wave amplitudes in the precordial leads. CONCLUSION: Our results demonstrate that the Eikonal model yields accurate LATs and combined with the boundary element method precise ECGs compared to markedly more expensive full bidomain simulations. However, for an accurate representation of atrial repolarization dynamics, diffusion terms must be accounted for in simplified models. SIGNIFICANCE: Simulations of atrial LATs and ECGs can be notably accelerated to clinically feasible time frames at high accuracy by resorting to the Eikonal and boundary element methods.


Assuntos
Fibrilação Atrial , Sistema de Condução Cardíaco , Humanos , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Átrios do Coração , Simulação por Computador , Eletrofisiologia Cardíaca , Coração/fisiologia
9.
Comput Biol Med ; 156: 106696, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870172

RESUMO

Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.


Assuntos
Bloqueio de Ramo , Cálcio , Animais , Cães , Cálcio/metabolismo , Coração/fisiologia , Arritmias Cardíacas , Ventrículos do Coração
10.
Sci Data ; 10(1): 531, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553349

RESUMO

Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms.


Assuntos
Eletrocardiografia , Coração , Humanos , Algoritmos , Aprendizado de Máquina , Miocárdio
11.
Mathematics (Basel) ; 10(5): 823, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35295404

RESUMO

Personalised computer models of cardiac function, referred to as cardiac digital twins, are envisioned to play an important role in clinical precision therapies of cardiovascular diseases. A major obstacle hampering clinical translation involves the significant computational costs involved in the personalisation of biophysically detailed mechanistic models that require the identification of high-dimensional parameter vectors. An important aspect to identify in electromechanics (EM) models are active mechanics parameters that govern cardiac contraction and relaxation. In this study, we present a novel, fully automated, and efficient approach for personalising biophysically detailed active mechanics models using a two-step multi-fidelity solution. In the first step, active mechanical behaviour in a given 3D EM model is represented by a purely phenomenological, low-fidelity model, which is personalised at the organ scale by calibration to clinical cavity pressure data. Then, in the second step, median traces of nodal cellular active stress, intracellular calcium concentration, and fibre stretch are generated and utilised to personalise the desired high-fidelity model at the cellular scale using a 0D model of cardiac EM. Our novel approach was tested on a cohort of seven human left ventricular (LV) EM models, created from patients treated for aortic coarctation (CoA). Goodness of fit, computational cost, and robustness of the algorithm against uncertainty in the clinical data and variations of initial guesses were evaluated. We demonstrate that our multi-fidelity approach facilitates the personalisation of a biophysically detailed active stress model within only a few (2 to 4) expensive 3D organ-scale simulations-a computational effort compatible with clinical model applications.

12.
Comput Mech ; 70(4): 703-722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124206

RESUMO

A key factor governing the mechanical performance of the heart is the bidirectional coupling with the vascular system, where alterations in vascular properties modulate the pulsatile load imposed on the heart. Current models of cardiac electromechanics (EM) use simplified 0D representations of the vascular system when coupling to anatomically accurate 3D EM models is considered. However, these ignore important effects related to pulse wave transmission. Accounting for these effects requires 1D models, but a 3D-1D coupling remains challenging. In this work, we propose a novel, stable strategy to couple a 3D cardiac EM model to a 1D model of blood flow in the largest systemic arteries. For the first time, a personalised coupled 3D-1D model of left ventricle and arterial system is built and used in numerical benchmarks to demonstrate robustness and accuracy of our scheme over a range of time steps. Validation of the coupled model is performed by investigating the coupled system's physiological response to variations in the arterial system affecting pulse wave propagation, comprising aortic stiffening, aortic stenosis or bifurcations causing wave reflections. Our first 3D-1D coupled model is shown to be efficient and robust, with negligible additional computational costs compared to 3D-0D models. We further demonstrate that the calibrated 3D-1D model produces simulated data that match with clinical data under baseline conditions, and that known physiological responses to alterations in vascular resistance and stiffness are correctly replicated. Thus, using our coupled 3D-1D model will be beneficial in modelling studies investigating wave propagation phenomena.

13.
J Comput Phys ; 463: 111266, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35662800

RESUMO

Image-based computational models of the heart represent a powerful tool to shed new light on the mechanisms underlying physiological and pathological conditions in cardiac function and to improve diagnosis and therapy planning. However, in order to enable the clinical translation of such models, it is crucial to develop personalized models that are able to reproduce the physiological reality of a given patient. There have been numerous contributions in experimental and computational biomechanics to characterize the passive behavior of the myocardium. However, most of these studies suffer from severe limitations and are not applicable to high-resolution geometries. In this work, we present a novel methodology to perform an automated identification of in vivo properties of passive cardiac biomechanics. The highly-efficient algorithm fits material parameters against the shape of a patient-specific approximation of the end-diastolic pressure-volume relation (EDPVR). Simultaneously, an unloaded reference configuration is generated, where a novel line search strategy to improve convergence and robustness is implemented. Only clinical image data or previously generated meshes at one time point during diastole and one measured data point of the EDPVR are required as an input. The proposed method can be straightforwardly coupled to existing finite element (FE) software packages and is applicable to different constitutive laws and FE formulations. Sensitivity analysis demonstrates that the algorithm is robust with respect to initial input parameters.

14.
Front Physiol ; 13: 907190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213235

RESUMO

Computer models capable of representing the intrinsic personal electrophysiology (EP) of the heart in silico are termed virtual heart technologies. When anatomy and EP are tailored to individual patients within the model, such technologies are promising clinical and industrial tools. Regardless of their vast potential, few virtual technologies simulating the entire organ-scale EP of all four-chambers of the heart have been reported and widespread clinical use is limited due to high computational costs and difficulty in validation. We thus report on the development of a novel virtual technology representing the electrophysiology of all four-chambers of the heart aiming to overcome these limitations. In our previous work, a model of ventricular EP embedded in a torso was constructed from clinical magnetic resonance image (MRI) data and personalized according to the measured 12 lead electrocardiogram (ECG) of a single subject under normal sinus rhythm. This model is then expanded upon to include whole heart EP and a detailed representation of the His-Purkinje system (HPS). To test the capacities of the personalized virtual heart technology to replicate standard clinical morphological ECG features under such conditions, bundle branch blocks within both the right and the left ventricles under two different conduction velocity settings are modeled alongside sinus rhythm. To ensure clinical viability, model generation was completely automated and simulations were performed using an efficient real-time cardiac EP simulator. Close correspondence between the measured and simulated 12 lead ECG was observed under normal sinus conditions and all simulated bundle branch blocks manifested relevant clinical morphological features.

15.
Ann Biomed Eng ; 49(12): 3143-3153, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431016

RESUMO

Personalized models of cardiac electrophysiology (EP) that match clinical observation with high fidelity, referred to as cardiac digital twins (CDTs), show promise as a tool for tailoring cardiac precision therapies. Building CDTs of cardiac EP relies on the ability of models to replicate the ventricular activation sequence under a broad range of conditions. Of pivotal importance is the His-Purkinje system (HPS) within the ventricles. Workflows for the generation and incorporation of HPS models are needed for use in cardiac digital twinning pipelines that aim to minimize the misfit between model predictions and clinical data such as the 12 lead electrocardiogram (ECG). We thus develop an automated two stage approach for HPS personalization. A fascicular-based model is first introduced that modulates the endocardial Purkinje network. Only emergent features of sites of earliest activation within the ventricular myocardium and a fast-conducting sub-endocardial layer are accounted for. It is then replaced by a topologically realistic Purkinje-based representation of the HPS. Feasibility of the approach is demonstrated. Equivalence between both HPS model representations is investigated by comparing activation patterns and 12 lead ECGs under both sinus rhythm and right-ventricular apical pacing. Predominant ECG morphology is preserved by both HPS models under sinus conditions, but elucidates differences during pacing.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Medicina de Precisão , Algoritmos , Fascículo Atrioventricular/fisiopatologia , Eletrocardiografia , Humanos , Imageamento por Ressonância Magnética , Ramos Subendocárdicos/fisiopatologia
16.
Comput Methods Programs Biomed ; 208: 106223, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34171774

RESUMO

BACKGROUND AND OBJECTIVE: Cardiac electrophysiology is a medical specialty with a long and rich tradition of computational modeling. Nevertheless, no community standard for cardiac electrophysiology simulation software has evolved yet. Here, we present the openCARP simulation environment as one solution that could foster the needs of large parts of this community. METHODS AND RESULTS: openCARP and the Python-based carputils framework allow developing and sharing simulation pipelines which automate in silico experiments including all modeling and simulation steps to increase reproducibility and productivity. The continuously expanding openCARP user community is supported by tailored infrastructure. Documentation and training material facilitate access to this complementary research tool for new users. After a brief historic review, this paper summarizes requirements for a high-usability electrophysiology simulator and describes how openCARP fulfills them. We introduce the openCARP modeling workflow in a multi-scale example of atrial fibrillation simulations on single cell, tissue, organ and body level and finally outline future development potential. CONCLUSION: As an open simulator, openCARP can advance the computational cardiac electrophysiology field by making state-of-the-art simulations accessible. In combination with the carputils framework, it offers a tailored software solution for the scientific community and contributes towards increasing use, transparency, standardization and reproducibility of in silico experiments.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Software , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
17.
IEEE Trans Biomed Eng ; 68(11): 3290-3300, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33784613

RESUMO

OBJECTIVE: In this study, we have used whole heart simulations parameterized with large animal experiments to validate three techniques (two from the literature and one novel) for estimating epicardial and volumetric conduction velocity (CV). METHODS: We used an eikonal-based simulation model to generate ground truth activation sequences with prescribed CVs. Using the sampling density achieved experimentally we examined the accuracy with which we could reconstruct the wavefront, and then examined the robustness of three CV estimation techniques to reconstruction related error. We examined a triangulation-based, inverse-gradient-based, and streamline-based techniques for estimating CV cross the surface and within the volume of the heart. RESULTS: The reconstructed activation times agreed closely with simulated values, with 50-70% of the volumetric nodes and 97-99% of the epicardial nodes were within 1 ms of the ground truth. We found close agreement between the CVs calculated using reconstructed versus ground truth activation times, with differences in the median estimated CV on the order of 3-5% volumetrically and 1-2% superficially, regardless of what technique was used. CONCLUSION: Our results indicate that the wavefront reconstruction and CV estimation techniques are accurate, allowing us to examine changes in propagation induced by experimental interventions such as acute ischemia, ectopic pacing, or drugs. SIGNIFICANCE: We implemented, validated, and compared the performance of a number of CV estimation techniques. The CV estimation techniques implemented in this study produce accurate, high-resolution CV fields that can be used to study propagation in the heart experimentally and clinically.


Assuntos
Sistema de Condução Cardíaco , Coração , Animais , Simulação por Computador , Coração/diagnóstico por imagem , Sistema de Condução Cardíaco/diagnóstico por imagem
18.
Med Image Anal ; 71: 102080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975097

RESUMO

Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.


Assuntos
Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Simulação por Computador , Coração , Ventrículos do Coração , Humanos
19.
SoftwareX ; 11: 100454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607406

RESUMO

Advanced cardiac modeling studies rely on the ability to generate and functionalize personalized in silico models from tomographic multi-label image stacks. Eventually, this is used for building virtual cohorts that capture the variability in size, shape, and morphology of individual hearts. Typical modeling workflows involve a multitude of interactive mesh manipulation steps, rendering model generation expensive. Meshtool is software specifically designed for automating all complex mesh manipulation tasks emerging in such workflows by implementing algorithms for tasks describable as operations on label fields and/or geometric features. We illustrate how Meshtool increases efficiency and reduces costs by offering an automatable, high performance mesh manipulation toolbox.

20.
J Biomech ; 101: 109645, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014305

RESUMO

The pericardium affects cardiac motion by limiting epicardial displacement normal to the surface. In computational studies, it is important for the model to replicate realistic motion, as this affects the physiological fidelity of the model. Previous computational studies showed that accounting for the effect of the pericardium allows for a more realistic motion simulation. In this study, we describe the mechanism through which the pericardium causes improved cardiac motion. We simulated electrical activation and contraction of the ventricles on a four-chamber heart in the presence and absence of the effect of the pericardium. We simulated the mechanical constraints imposed by the pericardium by applying normal Robin boundary conditions on the ventricular epicardium. We defined a regional scaling of normal springs stiffness based on image-derived motion from CT images. The presence of the pericardium reduced the error between simulated and image-derived end-systolic configurations from 12.8±4.1 mm to 5.7±2.5 mm. First, the pericardium prevents the ventricles from spherising during isovolumic contraction, reducing the outward motion of the free walls normal to the surface and the upwards motion of the apex. Second, by restricting the inward motion of the free and apical walls of the ventricles the pericardium increases atrioventricular plane displacement by four folds during ejection. Our results provide a mechanistic explanation of the importance of the pericardium in physiological simulations of electromechanical cardiac function.


Assuntos
Modelos Cardiovasculares , Pericárdio/fisiologia , Sístole/fisiologia , Função Ventricular , Humanos , Contração Miocárdica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA