Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 19(1): 109-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652678

RESUMO

Although upland cotton (Gossypium hirsutism L.) originated in the tropics, this early maturity cotton can be planted as far north as 46°N in China due to the accumulation of numerous phenotypic and physiological adaptations during domestication. However, how the genome of early maturity cotton has been altered by strong human selection remains largely unknown. Herein, we report a cotton genome variation map generated by the resequencing of 436 cotton accessions. Whole-genome scans for sweep regions identified 357 putative selection sweeps covering 4.94% (112 Mb) of the upland cotton genome, including 5184 genes. These genes were functionally related to flowering time control, hormone catabolism, ageing and defence response adaptations to environmental changes. A genome-wide association study (GWAS) for seven early maturity traits identified 307 significant loci, 22.48% (69) of which overlapped with putative selection sweeps that occurred during the artificial selection of early maturity cotton. Several previously undescribed candidate genes associated with early maturity were identified by GWAS. This study provides insights into the genetic basis of early maturity in upland cotton as well as breeding resources for cotton improvement.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , China , Fibra de Algodão , Genoma de Planta/genética , Genômica , Genótipo , Gossypium/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas
2.
BMC Genomics ; 21(1): 795, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198654

RESUMO

BACKGROUND: Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. RESULTS: In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into 10 clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. CONCLUSIONS: The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton.


Assuntos
Gossypium , Proteínas de Plantas , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
BMC Genomics ; 20(1): 558, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286851

RESUMO

BACKGROUND: Many BURP domain-containing proteins, which are unique to plants, have been identified. They performed diverse functions in plant development and the stress response. To date, only a few BURP domain-containing genes have been studied, and no comprehensive analysis of the gene family in cotton has been reported. RESULTS: In this study, 18, 17 and 30 putative BURP genes were identified in G. raimondii (D5), G. arboreum (A2) and G. hirsutum (AD1), respectively. These BURP genes were phylogenetically classified into eight subfamilies, which were confirmed by analyses of gene structures, motifs and protein domains. The uneven distribution of BURPs in chromosomes and gene duplication analysis indicated that segmental duplication might be the main driving force of the GhBURP family expansion. Promoter regions of all GhBURPs contained at least one putative stress-related cis-elements. Analysis of transcriptomic data and qRT-PCR showed that GhBURPs showed different expression patterns in different organs, and all of them, especially the members of the RD22-like subfamily, could be induced by different stresses, such as abscisic acid (ABA) and salicylic acid (SA), which indicated that the GhBURPs may performed important functions in cotton's responses to various abiotic stresses. CONCLUSIONS: Our study comprehensively analyzed BURP genes in G. hirsutum, providing insight into the functions of GhBURPs in cotton development and adaptation to stresses.


Assuntos
Perfilação da Expressão Gênica , Genômica , Gossypium/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Genoma de Planta/genética , Gossypium/fisiologia , Especificidade de Órgãos , Filogenia , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Estresse Fisiológico/genética , Sintenia
4.
BMC Plant Biol ; 19(1): 116, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922232

RESUMO

BACKGROUND: Premature senescence can reduce the yield and quality of crops. WRKY transcription factors (TFs) play important roles during leaf senescence, but little is known about their ageing mechanisms in cotton. RESULTS: In this study, a group III WRKY TF, GhWRKY27, was isolated and characterized. The expression of GhWRKY27 was induced by leaf senescence and was higher in an early-ageing cotton variety than in a non-early-ageing cotton variety. Overexpression of GhWRKY27 in Arabidopsis promoted leaf senescence, as determined by reduced chlorophyll content and elevated expression of senescence-associated genes (SAGs). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that GhWRKY27 interacted with an MYB TF, GhTT2. Putative target genes of GhWRKY27 were identified via chromatin immunoprecipitation followed by sequencing (ChIP-seq). Yeast one-hybrid (Y1H) assay and electrophoretic mobility shift assay (EMSA) revealed that GhWRKY27 binds directly to the promoters of cytochrome P450 94C1 (GhCYP94C1) and ripening-related protein 2 (GhRipen2-2). In addition, the expression patterns of GhTT2, GhCYP94C1 and GhRipen2-2 were identified during leaf senescence. Transient dual-luciferase reporter assay indicated that GhWRKY27 could activate the expression of GhCYP94C1 and GhRipen2-2. CONCLUSIONS: Our work lays the foundation for further study of the functional roles of WRKY genes during leaf senescence in cotton. In addition, our data provide new insights into the senescence-associated mechanisms of WRKY genes in cotton.


Assuntos
Gossypium/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
BMC Genomics ; 19(1): 661, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200887

RESUMO

BACKGROUND: Pectin is a major component and structural polysaccharide of the primary cell walls and middle lamella of higher plants. Pectate lyase (PEL, EC 4.2.2.2), a cell wall modification enzyme, degrades de-esterified pectin for cell wall loosening, remodeling and rearrangement. Nevertheless, there have been few studies on PEL genes and no comprehensive analysis of the PEL gene family in cotton. RESULTS: We identified 53, 42 and 83 putative PEL genes in Gossypium raimondii (D5), Gossypium arboreum (A2), and Gossypium hirsutum (AD1), respectively. These PEL genes were classified into five subfamilies (I-V). Members from the same subfamilies showed relatively conserved gene structures, motifs and protein domains. An analysis of gene chromosomal locations and gene duplication revealed that segmental duplication likely contributed to the expansion of the GhPELs. The 2000 bp upstream sequences of all the GhPELs contained auxin response elements. A transcriptomic data analysis showed that 62 GhPELs were expressed in various tissues. Notably, most (29/32) GhPELs of subfamily IV were preferentially expressed in the stamen, and five GhPELs of subfamily V were prominently expressed at the fiber elongation stage. In addition, qRT-PCR analysis revealed the expression characteristics of 24 GhPELs in four pollen developmental stages and significantly different expression of some GhPELs between long- and short-fiber cultivars. Moreover, some members were responsive to IAA treatment. The results indicate that GhPELs play significant and functionally diverse roles in the development of different tissues. CONCLUSIONS: In this study, we comprehensively analyzed PELs in G. hirsutum, providing a foundation to better understand the functions of GhPELs in different tissues and pathways, especially in pollen, fiber and the auxin signaling pathway.


Assuntos
Genômica , Gossypium/enzimologia , Gossypium/genética , Polissacarídeo-Liases/genética , Sequência Conservada , Flores/crescimento & desenvolvimento , Genoma de Planta/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética
6.
Theor Appl Genet ; 131(6): 1299-1314, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29497767

RESUMO

KEY MESSAGE: Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation for cultivating moderately short and compact varieties in future Chinese cotton-breeding programs.


Assuntos
Genes de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , China , Mapeamento Cromossômico , Inativação Gênica , Estudos de Associação Genética , Genética Populacional , Genótipo , Haplótipos , Desequilíbrio de Ligação , Fenótipo
7.
BMC Genet ; 19(1): 48, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30060731

RESUMO

BACKGROUND: WRKY transcription factors (TFs) participate in various physiological processes of plants. Although WRKY genes have been well studied in model plants, knowledge of the functional roles of these genes is still extremely limited in cotton. RESULTS: In this study, a group IId WRKY gene from cotton, GhWRKY42, was isolated and characterized. Our data showed that GhWRKY42 localized to the nucleus. A transactivation assay in yeast demonstrated that GhWRKY42 was not a transcriptional activator. A ß-glucuronidase (GUS) activity assay revealed that the promoter of GhWRKY42 showed fragment deletion activity in Nicotiana tabacum and was mainly expressed in the roots, stems and leaves of ProGhWRKY42::GUS transgenic Arabidopsis plants. Quantitative real-time PCR (qRT-PCR) analysis indicated that GhWRKY42 was up-regulated during leaf senescence and was induced after exposure to abiotic stresses. Constitutive expression of GhWRKY42 in Arabidopsis led to a premature aging phenotype, which was correlated with an increased number of senescent leaves, reduced chlorophyll content and elevated expression of senescence-associated genes (SAGs). In addition, virus-induced gene silencing (VIGS) was used to silence the endogenous GhWRKY42 gene in cotton, and this silencing reduced plant height. CONCLUSIONS: Our findings indicate that GhWRKY42 is involved in abiotic stress responses, premature leaf senescence and stem development. This work establishes a solid foundation for further functional analysis of the GhWRKY42 gene in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
8.
BMC Genom Data ; 24(1): 55, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735623

RESUMO

BACKGROUND: The jasmonate ZIM domain (JAZ) protein is a key repressor of the jasmonate signal transduction pathway, which plays an important role in plant growth and development and defense responses. In this study, based on the published whole-genome data, we identified members of the JAZ gene family in Populus trichocarpa. Through a series of bioinformatic approaches, their expression patterns under various stress conditions have been analyzed to explore and excavate the endogenous resistance genes of poplar and provide a theoretical basis for breeding new varieties of poplar resistance. RESULTS: A total of 13 PtJAZ genes have been identified in P. trichocarpa and designated as PtJAZ1-PtJAZ13. Those 13 PtJAZ genes were unevenly distributed on nine chromosomes, and they could be divided into four subfamilies. The gene structures and motif composition of the members derived from the same subfamily were similar. Collinearity analysis demonstrated that, compared with Arabidopsis thaliana and Oryza sativa, the most collinear pairs (13) were found in P. trichocarpa and Eucalyptus robusta. Cis-acting element analysis suggested that the promoter regions of PtJAZs contained a large number of hormones and stress response elements, of which abscisic acid (ABA) and methyl jasmonate (MeJA) hormone response elements were the most abundant. The PtJAZ genes not only had diverse expression patterns in different tissues, but they also responded to various abiotic and biotic stress conditions. The co-expression network and GO and KEGG analyses showed that JAZ genes were closely related to insect resistance. CONCLUSIONS: In this study, applying bioinformatic methods, 13 PtJAZ gene family members from P. trichocarpa were identified and comprehensively analyzed. By further studying the function of the poplar JAZ gene family, the aim is to select genes with better insect resistance and stress resistance so as to lay a solid foundation for the subsequent breeding of new poplar varieties.


Assuntos
Arabidopsis , Populus , Populus/genética , Melhoramento Vegetal , Ácido Abscísico , Arabidopsis/genética
9.
Int J Biol Macromol ; 242(Pt 1): 124379, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178519

RESUMO

The WRKY transcription factor (TF) family, named for its iconic WRKY domain, is among the largest and most functionally diverse TF families in higher plants. WRKY TFs typically interact with the W-box of the target gene promoter to activate or inhibit the expression of downstream genes; these TFs are involved in the regulation of various physiological responses. Analyses of WRKY TFs in numerous woody plant species have revealed that WRKY family members are broadly involved in plant growth and development, as well as responses to biotic and abiotic stresses. Here, we review the origin, distribution, structure, and classification of WRKY TFs, along with their mechanisms of action, the regulatory networks in which they are involved, and their biological functions in woody plants. We consider methods currently used to investigate WRKY TFs in woody plants, discuss outstanding problems, and propose several new research directions. Our objective is to understand the current progress in this field and provide new perspectives to accelerate the pace of research that enable greater exploration of the biological functions of WRKY TFs.


Assuntos
Proteínas de Plantas , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Plantas/química , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Desenvolvimento Vegetal/genética , Regulação da Expressão Gênica de Plantas , Filogenia
10.
Gene ; 769: 145235, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33148424

RESUMO

MADS-box gene family plays an important role in the molecular regulatory network of flower development. APETALA1 (AP1), a MADS-box gene, plays an important role in the development of flower organs. Although many studies about MADS-box family genes have been reported, the function of AP1 is still not clear in cotton. In this study, GhAP1.7 (Gh_D03G0922), a candidate gene for cotton flower time and plant height obtained from our previous studies, was cloned from CCRI50 cotton variety and functionally characterized. Subcellular localization demonstrated that GhAP1.7 was located in nucleus. Infection test of Arabidopsis revealed that GhAP1.7 could cause precocious flowering and virus-induced gene silence (VIGS) assay demonstrated that GhAP1.7 could lead to delayed flowering of cotton plants. Yeast one-hybrid assays and transient dual-luciferase assays suggested that floral meristem identity control gene LEAFY (LFY) can bind the promoter of GhAP1.7 and negatively regulate it. Our research indicated that GhAP1.7 might work as a positive regulator in plant flowering. Moreover, GhAP1.7 may negatively regulated by GhLFY in the regulatory pathways. This work laid the foundation for subsequent functional studies of GhAP1.7.


Assuntos
Flores , Gossypium/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Front Plant Sci ; 12: 684227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868097

RESUMO

The membrane attack complex/perforin (MACPF) domain-containing proteins are involved in the various developmental processes and in responding to diverse abiotic stress. The function and regulatory network of the MACPF genes are rarely reported in Gossypium spp. We study the detailed identification and partial functional verification of the members of the MACPF family. Totally, 100 putative MACPF proteins containing complete MACPF domain were identified from the four cotton species. They were classified into three phylogenetic groups and underwent multifold pressure indicating that selection produced new functional differentiation. Cotton MACPF gene family members expanded mainly through the whole-genome duplication (WGD)/segmental followed by the dispersed. Expression and cis-acting elements analysis revealed that MACPFs play a role in resistance to abiotic stresses, and some selected GhMACPFs were able to respond to the PEG and cold stresses. Co-expression analysis showed that GhMACPFs might interact with valine-glutamine (VQ), WRKY, and Apetala 2 (AP2)/ethylene responsive factor (ERF) domain-containing genes under cold stress. In addition, silencing endogenous GhMACPF26 in cotton by the virus-induced gene silencing (VIGS) method indicated that GhMACPF26 negatively regulates cold tolerance. Our data provided a comprehensive phylogenetic evolutionary view of Gossypium MACPFs. The MACPFs may work together with multiple transcriptional factors and play roles in acclimation to abiotic stress, especially cold stress in cotton.

12.
Plant Sci ; 293: 110395, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081256

RESUMO

Pectate lyases (PELs) play important roles in plant growth and development, mainly by degrading the pectin in primary cell walls. However, the role of PELs in cotton fiber elongation, which also involves changes in cellular structure and components, is poorly understood. Therefore, we aimed to isolate and characterize GhPEL76, as we suspected it to contribute to the regulation of fiber elongation. Expression analysis (qRT-PCR) revealed that GhPEL76 is predominately expressed in cotton fiber, with significantly different expression levels in long- and short-fiber cultivars, and that GhPEL76 expression is responsive to gibberellic acid and indoleacetic acid treatment. Furthermore, GhPEL76 promoter-driven ß-glucuronidase activity was detected in the roots, hypocotyls, and leaves of transgenic Arabidopsis plants, and the overexpression of GhPEL76 in transgenic Arabidopsis promoted the elongation of several organs, including petioles, hypocotyls, primary roots, and trichomes. Additionally, the virus-induced silencing of GhPEL76 in cotton reduced fiber length, and both yeast one-hybrid and transient dual-luciferase assays suggested that GhbHLH13, a bHLH transcription factor that is up-regulated during fiber elongation, activates GhPEL76 expression by binding to the G-box of the GhPEL76 promoter region. Therefore, these results suggest GhPEL76 positively regulates fiber elongation and provide a basis for future studies of cotton fiber development.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Gossypium/enzimologia , Gossypium/genética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Fibra de Algodão , Genes de Plantas/genética , Giberelinas/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
13.
Front Plant Sci ; 10: 1352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736997

RESUMO

WRKY transcription factors (TFs) play essential roles in the plant response to leaf senescence and abiotic stress. However, the WRKY TFs involved in leaf senescence and stress tolerance in cotton (Gossypium hirsutum L.) are still largely unknown. In this study, a WRKY gene, GhWRKY91, was isolated and thoroughly characterized. Transcriptional activity assays showed that GhWRKY91 could activate transcription in yeast. The expression pattern of GhWRKY91 during leaf senescence, and in response to abscisic acid (ABA) and drought stress was evaluated. ß-Glucuronidase (GUS) activity driven by the GhWRKY91 promoter in transgenic Arabidopsis was reduced upon exposure to ABA and drought treatments. Constitutive expression of GhWRKY91 in Arabidopsis delayed natural leaf senescence. GhWRKY91 transgenic plants exhibited increased drought tolerance and presented delayed drought-induced leaf senescence, as accompanied by reinforced expression of stress-related genes and attenuated expression of senescence-associated genes (SAGs). Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs) revealed that GhWRKY91 directly targets GhWRKY17, a gene associated with ABA signals and reactive oxygen species (ROS) production. A transient dual-luciferase reporter assay demonstrated that GhWRKY91 activated the expression of GhWRKY17. Our results suggest that GhWRKY91 might negatively regulate natural and stress-induced leaf senescence and provide a foundation for further functional studies on leaf senescence and the stress response in cotton.

14.
Front Plant Sci ; 10: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804954

RESUMO

Fiber length (FL) is an important fiber quality trait in cotton. Although many fiber quality quantitative trait loci (QTL) responsible for FL have been identified, most cannot be applied to breeding programs, mainly due to unstable environments or large confidence intervals. In this study, we combined a genome-wide association study (GWAS) and linkage mapping to identify and validate high-quality QTLs responsible for FL. For the GWAS, we developed 93,250 high-quality single-nucleotide polymorphism (SNP) markers based on 355 accessions, and the FL was measured in eight different environments. For the linkage mapping, we constructed an F 2 population from two extreme accessions. The high-density linkage maps spanned 3,848.29 cM, with an average marker interval of 1.41 cM. In total, 14 and 13 QTLs were identified in the association and linkage mapping analyses, respectively. Most importantly, a major QTL on chromosome D03 identified in both populations explained more than 10% of the phenotypic variation (PV). Furthermore, we found that a sucrose synthesis-related gene (Gh_D03G1338) was associated with FL in this QTL region. The RNA-seq data showed that Gh_D03G1338 was highly expressed during the fiber development stage, and the qRT-PCR analysis showed significant expression differences between the long fiber and short fiber varieties. These results suggest that Gh_D03G1338 may determine cotton fiber elongation by regulating the synthesis of sucrose. Favorable QTLs and candidate genes should be useful for increasing fiber quality in cotton breeding.

15.
Front Genet ; 10: 824, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572442

RESUMO

The glycosyltransferase (GT) 47 family is involved in the biosynthesis of xylose, pectin and xyloglucan and plays a significant role in maintaining the normal morphology of the plant cell wall. However, the functions of GT47s are less well known in cotton. In the present study, a total of 53, 53, 105 and 109 GT47 genes were detected by genome-wide identification in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. All the GT47s were classified into six major groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GT47 genes was highly conserved. Collinearity analysis showed that GT47 gene family expansion occurred in Gossypium spp. mainly through whole-genome duplication and that segmental duplication mainly promoted GT47 gene expansion within the A and D subgenomes. The Ka/Ks values suggested that the GT47 gene family has undergone purifying selection during the long-term evolutionary process. Transcriptomic data and qRT-PCR showed that GhGT47 genes exhibited different expression patterns in each tissue and during fiber development. Our results suggest that some genes in the GhGT47 family might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GT47 genes in cotton.

16.
PLoS One ; 13(1): e0191681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29370286

RESUMO

WRKY transcription factors play important roles in plant defense, stress response, leaf senescence, and plant growth and development. Previous studies have revealed the important roles of the group IIa GhWRKY genes in cotton. To comprehensively analyze the group IIa GhWRKY genes in upland cotton, we identified 15 candidate group IIa GhWRKY genes in the Gossypium hirsutum genome. The phylogenetic tree, intron-exon structure, motif prediction and Ka/Ks analyses indicated that most group IIa GhWRKY genes shared high similarity and conservation and underwent purifying selection during evolution. In addition, we detected the expression patterns of several group IIa GhWRKY genes in individual tissues as well as during leaf senescence using public RNA sequencing data and real-time quantitative PCR. To better understand the functions of group IIa GhWRKYs in cotton, GhWRKY17 (KF669857) was isolated from upland cotton, and its sequence alignment, promoter cis-acting elements and subcellular localization were characterized. Moreover, the over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAG13, enhancing the plant's susceptibility to leaf senescence. These findings lay the foundation for further analysis and study of the functions of WRKY genes in cotton.


Assuntos
Genes de Plantas , Gossypium/classificação , Fatores de Transcrição/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Gossypium/genética , Filogenia , Folhas de Planta/genética , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
17.
Front Plant Sci ; 9: 1684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519251

RESUMO

WRKY transcription factors have diverse functions in regulating stress response, leaf senescence, and plant growth and development. However, knowledge of the group IId WRKY subfamily in cotton is largely absent. This study identified 34 group IId WRKY genes in the Gossypium hirsutum genome, and their genomic loci were investigated. Members clustered together in the phylogenetic tree had similar motif compositions and gene structural features, revealing similarity and conservation within group IId WRKY genes. During the evolutionary process, 14 duplicated genes appeared to undergo purification selection. Public RNA-seq data were used to examine the expression patterns of group IId WRKY genes in various tissues and under drought and salt stress conditions. Ten highly expressed genes were identified, and the ten candidate genes revealed distinct expression patterns under drought and salt treatments by qRT-PCR analysis. Among them, Gh_A11G1801 was used for functional characterization. GUS activity was differentially induced by various stresses in Gh_A11G1801p::GUS transgenic Arabidopsis plants. The virus-induced gene silencing (VIGS) of Gh_A11G1801 resulted in drought sensitivity in cotton plants, which was accompanied by elevated malondialdehyde (MDA) content and reduced catalase (CAT) content. Taken together, these findings obtained in this study provide valuable resources for further studying group IId WRKY genes in cotton. Our results also enrich the gene resources for the genetic improvements of cotton varieties that are suitable for growth in stressful conditions.

18.
PLoS One ; 12(8): e0182918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809947

RESUMO

Due to China's rapidly increasing population, the total arable land area has dramatically decreased; as a consequence, the competition for farming land allocated for grain and cotton production has become fierce. Therefore, to overcome the existing contradiction between cotton grain and fiber production and the limited farming land, development of early-maturing cultivars is necessary. In this research, a high-density linkage map of upland cotton was constructed using genotyping by sequencing (GBS) to discover single nucleotide polymorphism (SNP) markers associated with early maturity in 170 F2 individuals derived from a cross between LU28 and ZHONG213. The high-density genetic map, which was composed of 3978 SNP markers across the 26 cotton chromosomes, spanned 2480 cM with an average genetic distance of 0.62 cM. Collinearity analysis showed that the genetic map was of high quality and accurate and agreed well with the Gossypium hirsutum reference genome. Based on this high-density linkage map, QTL analysis was performed on cotton early-maturity traits, including FT, FBP, WGP, NFFB, HNFFB and PH. A total 47 QTLs for the six traits were detected; each of these QTLs explained between 2.61% and 32.57% of the observed phenotypic variation. A major region controlling early-maturity traits in Gossypium hirsutum was identified for FT, FBP, WGP, NFFB and HNFFB on chromosome D03. QTL analyses revealed that phenotypic variation explained (PVE) ranged from 10.42% to 32.57%. Two potential candidate genes, Gh_D03G0885 and Gh_D03G0922, were predicted in a stable QTL region and had higher expression levels in the early-maturity variety ZHONG213 than in the late-maturity variety LU28. However, further evidence is required for functional validation. This study could provide useful information for the dissection of early-maturity traits and guide valuable genetic loci for molecular-assisted selection (MAS) in cotton breeding.


Assuntos
Mapeamento Cromossômico , Gossypium/genética , Locos de Características Quantitativas/genética , Cruzamento , Genoma de Planta/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética
19.
Front Plant Sci ; 8: 1657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993786

RESUMO

Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.

20.
Front Plant Sci ; 7: 1576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818672

RESUMO

Improving cotton yield is a major breeding goal for Chinese upland cotton. Lint percentage is an important yield component and a critical economic index for cotton cultivars, and raising the lint percentage has a close relationship to improving cotton lint yield. To investigate the genetic architecture of lint percentage, a diversity panel consisting of 355 upland cotton accessions was grown, and the lint percentage was measured in four different environments. Genotyping was performed with specific-locus amplified fragment sequencing (SLAF-seq). Twelve single-nucleotide polymorphisms (SNPs) associated with lint percentage were detected via a genome-wide association study (GWAS), in which five SNP loci distributed on chromosomes At3 (A02) and At4 (A08) and contained two major-effect QTLs, which were detected in the best linear unbiased predictions (BLUPs) and in more than three environments simultaneously. Furthermore, favorable haplotypes (FHs) of two major-effect QTLs and 47 putative candidate genes in the two linkage disequilibrium (LD) blocks of these associated loci were identified. The expression levels of these putative candidate genes were estimated using RNA-seq data from ten upland cotton tissues. We found that Gh_A02G1268 was very highly expressed during the early fiber development stage, whereas the gene was poorly expressed in the seed. These results implied that Gh_A02G1268 may determine the lint percentage by regulating seed and fiber development. The favorable QTL alleles and candidate genes for lint percentage identified in this study will have high potential for improving lint yield in future Chinese cotton breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA