Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(15): 8925-8937, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31313910

RESUMO

This study presents land-use regression (LUR) models for submicron particulate matter (PM1) components from an urban area. Models are presented for mass concentrations of inorganic species (SO4, NO3, NH4), organic aerosol (OA) factors, and total PM1. OA is source-apportioned using positive matrix factorization (PMF) of data collected from aerosol mass spectrometry deployed on a mobile laboratory. PMF yielded a three-factor solution: cooking OA (COA), hydrocarbon-like OA (HOA), and less-oxidized oxygenated OA (LO-OOA). This study represents the first time that LUR has been applied to source-resolved OA factors. We sampled a roughly 20 km2 area of West Oakland, California, USA, over 1 month (mid-July to mid-August, 2017). The road network of the sampling domain was comprehensively sampled each day using a randomized driving route to minimize temporal and spatial bias. Mobile measurements were aggregated both spatially and temporally for use as discrete spatial observations for LUR model building. LUR model performance was highest for those species with more spatial variability (primary OA factors: COA R2 = 0.80, HOA R2 = 0.67) and lowest for secondary inorganic species (SO4 R2 = 0.47, NH4 R2 = 0.43) that were more spatially homogeneous. Notably, the stepwise selective LUR algorithm largely selected predictors for primary OA factors that correspond to the associated land-use categories (e.g., cooking land-use variables were selected in cooking-related PM models). This finding appears to be robust, as we demonstrate the predictive link between land-use variables and the corresponding source-resolved PM1 components through a subsampling analysis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , California , Monitoramento Ambiental , Material Particulado
2.
Environ Sci Technol ; 52(2): 415-426, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29227637

RESUMO

We conducted a mobile sampling campaign in a historically industrialized terrain (Pittsburgh, PA) targeting spatial heterogeneity of organic aerosol. Thirty-six sampling sites were chosen based on stratification of traffic, industrial source density, and elevation. We collected organic carbon (OC) on quartz filters, quantified different OC components with thermal-optical analysis, and grouped them based on volatility in decreasing order (OC1, OC2, OC3, OC4, and pyrolyzed carbon (PC)). We compared our ambient OC concentrations (both gas and particle phase) to similar measurements from vehicle dynamometer tests, cooking emissions, biomass burning emissions, and a highway traffic tunnel. OC2 and OC3 loading on ambient filters showed a strong correlation with primary emissions while OC4 and PC were more spatially homogeneous. While we tested our hypothesis of OC2 and OC3 as markers of fresh source exposure for Pittsburgh, the relationship seemed to hold at a national level. Land use regression (LUR) models were developed for the OC fractions, and models had an average R2 of 0.64 (SD = 0.09). The paper demonstrates that OC2 and OC3 can be useful markers for fresh emissions, OC4 is a secondary OC indicator, and PC represents both biomass burning and secondary aerosol. People with higher OC exposure are likely inhaling more fresh OC2 and OC3, since secondary OC4 and PC varies much less drastically in space or with local primary sources.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Carbono , Monitoramento Ambiental
3.
Environ Sci Technol ; 52(20): 11545-11554, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30248264

RESUMO

Localized primary emissions of carbonaceous aerosol are the major drivers of intracity variability of submicron particulate matter (PM1) concentrations. We investigated spatial variations in PM1 composition with mobile sampling in Pittsburgh, Pennsylvania, United States and performed source-apportionment analysis to attribute primary organic aerosol (OA) to traffic (HOA) and cooking OA (COA). In high-source-impact locations, the PM1 concentration is, on average, 2 µg m-3 (40%) higher than urban background locations. Traffic emissions are the largest source contributing to population-weighted exposures to primary PM. Vehicle-miles traveled (VMT) can be used to reliably predict the concentration of HOA and localized black carbon (BC) in air pollutant spatial models. Restaurant count is a useful but imperfect predictor for COA concentration, likely due to highly variable emissions from individual restaurants. Near-road cooking emissions can be falsely attributed to traffic sources in the absence of PM source apportionment. In Pittsburgh, 28% and 9% of the total population are exposed to >1 µg m-3 of traffic- and cooking-related primary emissions, with some populations impacted by both sources. The source mix in many U.S. cities is similar; thus, we expect similar PM spatial patterns and increased exposure in high-source areas in other cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Material Particulado , Pennsylvania , Estados Unidos , Emissões de Veículos
4.
Environ Sci Technol ; 52(16): 9285-9294, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30070466

RESUMO

Organic aerosol (OA) is a major component of fine particulate matter (PM2.5) in urban environments. We performed in-motion ambient sampling from a mobile platform with an aerosol mass spectrometer (AMS) to investigate the spatial variability and sources of OA concentrations in Pittsburgh, Pennsylvania, a midsize, largely postindustrial American city. To characterize the relative importance of cooking and traffic sources, we sampled in some of the most populated areas (∼18 km2) in and around Pittsburgh during afternoon rush hour and evening mealtime, including congested highways, major local roads, areas with high densities of restaurants, and urban background locations. We found greatly elevated OA concentrations (10s of µg m-3) in the vicinity of numerous individual restaurants and commercial districts containing multiple restaurants. The AMS mass spectral information indicates that majority of the high concentration plumes (71%) were from cooking sources. Areas containing both busy roads and restaurants had systematically higher OA concentrations than areas with only busy roads and urban background locations. Elevated OA concentrations were measured hundreds of meters downwind of some restaurants, indicating that these sources can influence air quality on neighborhood scales. Approximately 20% of the population (∼250 000 people) in the Pittsburgh area lives within 200 m of a restaurant; therefore, restaurant emissions are potentially an important source of outdoor PM exposures for this large population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Cidades , Culinária , Monitoramento Ambiental , Material Particulado , Pennsylvania , Restaurantes
5.
Environ Sci Technol ; 52(12): 6807-6815, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29775536

RESUMO

Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km2. Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.


Assuntos
Poluentes Atmosféricos , Aerossóis , Cidades , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado
6.
J Air Waste Manag Assoc ; 66(4): 387-401, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745240

RESUMO

UNLABELLED: The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes. IMPLICATIONS: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.


Assuntos
Poluentes Atmosféricos/análise , Derivados de Benzeno/análise , Substâncias Perigosas/análise , Exposição Ambiental/análise , Resíduos Industriais , Fatores de Tempo
7.
Environ Health Perspect ; 128(1): 17009, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31934794

RESUMO

BACKGROUND: Most epidemiological studies address health effects of atmospheric particulate matter (PM) using mass-based measurements as exposure surrogates. However, this approach ignores many critical physiochemical properties of individual atmospheric particles. These properties control the deposition of particles in the human lung and likely their toxicity; in addition, they likely have larger spatial variability than PM mass. OBJECTIVES: This study was designed to quantify the spatial variability in number, size, source, and chemical mixing state of individual particles in a populous urban area. We quantified the population exposure to these detailed particle properties and compared them to mass-based exposures. METHODS: We performed mobile sampling using an advanced single-particle mass spectrometer to measure the spatial variability of number concentration of source-resolved 50-1,000 nm particles and particle mixing state in Pittsburgh, Pennsylvania. We built land-use regression (LUR) models to estimate their spatial patterns and coupled them with demographic data to estimate population exposure. RESULTS: Particle number concentration had a much larger spatial variability than mass concentration within the city. Freshly emitted particles from traffic and cooking drive the variability in particle number, but mass concentrations are dominated by aged background particles composed of secondary materials. In addition, people exposed to elevated number concentrations of atmospheric particles are also exposed to more externally mixed particles. CONCLUSIONS: Our advanced measurement technique provides a new exposure picture that resolves the large intra-city spatial heterogeneity in traffic and cooking particle number concentrations in the populous urban area. Our results provide a complementary and more detailed perspective compared with bulk measurements of composition. In addition, given the influence of particle mixing state on properties such as particle deposition in the lung, the large spatial gradients of chemical mixing state may significantly influence the health effects of fine PM. https://doi.org/10.1289/EHP5311.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Material Particulado , Poluentes Atmosféricos , Monitoramento Ambiental , Emissões de Veículos
8.
Artigo em Inglês | MEDLINE | ID: mdl-31083299

RESUMO

Volatile organic compounds (VOCs) are important atmospheric constituents because they contribute to formation of ozone and secondary aerosols, and because some VOCs are toxic air pollutants. We measured concentrations of a suite of anthropogenic VOCs during summer and winter at 70 locations representing different microenvironments around Pittsburgh, PA. The sampling sites were classified both by land use (e.g., high versus low traffic) and grouped based on geographic similarity and proximity. There was roughly a factor of two variation in both total VOC and single-ring aromatic VOC concentrations across the site groups. Concentrations were roughly 25% higher in winter than summer. Source apportionment with positive matrix factorization reveals that the major VOC sources are gasoline vehicles, solvent evaporation, diesel vehicles, and two factors attributed to industrial emissions. While we expected to observe significant spatial variability in the source impacts across the sampling domain, we instead found that source impacts were relatively homogeneous.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Cidades , Ionização de Chama , Pennsylvania , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA