Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 80(9): 1763-1773, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039908

RESUMO

A biological method was developed for reusing urban reclaimed water in circulating cooling water systems (CCWS), in which the compound microorganism preparation (CMP) mainly included nitrobacteria, Bacillus subtilis, photosynthetic bacteria and Thiobacillus denitrificans, was used to control the scaling, corrosion and biofouling of CCWS. The abundant carbon, nitrogen and phosphorus in urban reclaimed water met the needs of microbial growth. Compared with chemical agents, CMP had the advantages of high efficiency, no additional chemicals and being more economical. The research results showed that CMP improved water quality and decreased ammonia nitrogen (NH3-N) and chemical oxygen demand (COD). The concentration ratio of CCWS reached 3.87 using CMP. The corrosion inhibition rate of CMP and the removal rate on biofouling achieved 99.69% and 22.21%, respectively. The mechanisms of CMP to control scaling, corrosion and biofouling were discussed, and the surface characteristics and chemical compositions of corrosion products and biofouling were analyzed.


Assuntos
Incrustação Biológica , Purificação da Água , Amônia , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Água
2.
Front Plant Sci ; 13: 1012741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330263

RESUMO

Although the effects of girdling on grape berry development have been widely studied, the underlying mechanisms are poorly understood, especially at the molecular level. This study investigated the effect of trunk girdling on grape (Vitis L.) berry maturation. Girdling was performed on 5-year-old 'Summer Black' grapevines at early veraison, and transcriptional and physiologic analyses were performed. Trunk girdling promoted sugar accumulation and color development in berries and accelerated berry ripening by 25 days. Genes related to sucrose cleavage and polysaccharide degradation were upregulated at the transcriptional level, which was associated with increased monosaccharide accumulation and berry softening. Anthocyanin biosynthesis and accumulation were also enhanced by trunk girdling through the upregulation of anthocyanin biosynthesis genes including phenylalanine ammonia-lyase and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT). The increased expression of two VvUFGT genes was accompanied by the upregulation of VvMYBA2 under girdling. The upregulation of genes involved in ethylene biosynthesis and hormone (abscisic acid and brassinosteroid) responses and downregulation of genes involved in indoleacetic acid biosynthesis and response may have also promoted berry ripening in the girdling group. A total of 120 differentially expressed transcription factor genes from 29 gene families including MYB, ERF, and MYB-related were identified in the girdling group, which may participate in the regulation of berry development and ripening. These results provide molecular-level insight into the positive effects of trunk girdling on berry development in grapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA