Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 40(8): 111248, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001977

RESUMO

Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.


Assuntos
Tamoxifeno , Canais de Sódio Disparados por Voltagem , Potenciais de Ação , Gânglios Espinais , Humanos , Nociceptores , Dor/tratamento farmacológico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
2.
PLoS One ; 14(1): e0204193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699109

RESUMO

The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions.


Assuntos
Lampreias/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Reoperação/efeitos adversos , Medula Espinal/cirurgia , Traumatismos da Medula Espinal/etiologia , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA