Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(3): e18099, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164021

RESUMO

Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Fibrose , MicroRNAs/metabolismo , Receptores de Trombina
2.
Plant Physiol ; 179(4): 1704-1722, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710053

RESUMO

The symbiotic infection of root cells by nitrogen-fixing rhizobia during nodulation requires the transcription factor Nodule Inception (NIN). Our root hair transcriptomic study extends NIN's regulon to include Rhizobium Polar Growth and genes involved in cell wall modification, gibberellin biosynthesis, and a comprehensive group of nutrient (N, P, and S) uptake and assimilation genes, suggesting that NIN's recruitment to nodulation was based on its role as a growth module, a role shared with other NIN-Like Proteins. The expression of jasmonic acid genes in nin suggests the involvement of NIN in the resolution of growth versus defense outcomes. We find that the regulation of the growth module component Nodulation Pectate Lyase by NIN, and its function in rhizobial infection, are conserved in hologalegina legumes, highlighting its recruitment as a major event in the evolution of nodulation. We find that Nodulation Pectate Lyase is secreted to the infection chamber and the lumen of the infection thread. Gene network analysis using the transcription factor mutants for ERF Required for Nodulation1 and Nuclear Factor-Y Subunit A1 confirms hierarchical control of NIN over Nuclear Factor-Y Subunit A1 and shows that ERF Required for Nodulation1 acts independently to control infection. We conclude that while NIN shares functions with other NIN-Like Proteins, the conscription of key infection genes to NIN's control has made it a central regulatory hub for rhizobial infection.


Assuntos
Medicago truncatula/genética , Proteínas de Plantas/fisiologia , Rhizobium/fisiologia , Vias Biossintéticas/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Giberelinas/biossíntese , Medicago truncatula/microbiologia , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética
3.
Plant Biotechnol J ; 16(7): 1363-1374, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29271050

RESUMO

Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/genética , Genoma de Planta/genética , Lythraceae/genética , Antocianinas/biossíntese , Frutas/anatomia & histologia , Taninos Hidrolisáveis/metabolismo , Lythraceae/anatomia & histologia , Lythraceae/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética , Filogenia , Característica Quantitativa Herdável , Retroelementos/genética
4.
Plant Cell ; 27(12): 3410-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26672071

RESUMO

Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis.


Assuntos
Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Simbiose , Fatores de Transcrição/metabolismo , Cálcio/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Medicago truncatula/citologia , Medicago truncatula/fisiologia , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética
5.
Plant Physiol ; 171(1): 554-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021190

RESUMO

Optimization of nitrogen fixation by rhizobia in legumes is a key area of research for sustainable agriculture. Symbiotic nitrogen fixation (SNF) occurs in specialized organs called nodules and depends on a steady supply of carbon to both plant and bacterial cells. Here we report the functional characterization of a nodule-specific Suc transporter, MtSWEET11 from Medicago truncatula MtSWEET11 belongs to a clade of plant SWEET proteins that are capable of transporting Suc and play critical roles in pathogen susceptibility. When expressed in mammalian cells, MtSWEET11 transported sucrose (Suc) but not glucose (Glc). The MtSWEET11 gene was found to be expressed in infected root hair cells, and in the meristem, invasion zone, and vasculature of nodules. Expression of an MtSWEET11-GFP fusion protein in nodules resulted in green fluorescence associated with the plasma membrane of uninfected cells and infection thread and symbiosome membranes of infected cells. Two independent Tnt1-insertion sweet11 mutants were uncompromised in SNF Therefore, although MtSWEET11 appears to be involved in Suc distribution within nodules, it is not crucial for SNF, probably because other Suc transporters can fulfill its role(s).


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sacarose/metabolismo , Simbiose/fisiologia
6.
Plant Physiol ; 170(4): 2204-17, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26884486

RESUMO

The symbiosis between leguminous plants and soil rhizobia culminates in the formation of nitrogen-fixing organs called nodules that support plant growth. Two Medicago truncatula Tnt1-insertion mutants were identified that produced small nodules, which were unable to fix nitrogen effectively due to ineffective rhizobial colonization. The gene underlying this phenotype was found to encode a protein containing a putative membrane-localized domain of unknown function (DUF21) and a cystathionine-ß-synthase domain. The cbs1 mutants had defective infection threads that were sometimes devoid of rhizobia and formed small nodules with greatly reduced numbers of symbiosomes. We studied the expression of the gene, designated M truncatula Cystathionine-ß-Synthase-like1 (MtCBS1), using a promoter-ß-glucuronidase gene fusion, which revealed expression in infected root hair cells, developing nodules, and in the invasion zone of mature nodules. An MtCBS1-GFP fusion protein localized itself to the infection thread and symbiosomes. Nodulation factor-induced Ca(2+) responses were observed in the cbs1 mutant, indicating that MtCBS1 acts downstream of nodulation factor signaling. MtCBS1 expression occurred exclusively during Medicago-rhizobium symbiosis. Induction of MtCBS1 expression during symbiosis was found to be dependent on Nodule Inception (NIN), a key transcription factor that controls both rhizobial infection and nodule organogenesis. Interestingly, the closest homolog of MtCBS1, MtCBS2, was specifically induced in mycorrhizal roots, suggesting common infection mechanisms in nodulation and mycorrhization. Related proteins in Arabidopsis have been implicated in cell wall maturation, suggesting a potential role for CBS1 in the formation of the infection thread wall.


Assuntos
Cistationina beta-Sintase/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Simbiose , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Endocitose , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Medicago truncatula/genética , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nodulação , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Nódulos Radiculares de Plantas/genética
7.
Plant Physiol ; 162(1): 107-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23535942

RESUMO

Nodulation in legumes involves the coordination of epidermal infection by rhizobia with cell divisions in the underlying cortex. During nodulation, rhizobia are entrapped within curled root hairs to form an infection pocket. Transcellular tubes called infection threads then develop from the pocket and become colonized by rhizobia. The infection thread grows toward the developing nodule primordia and rhizobia are taken up into the nodule cells, where they eventually fix nitrogen. The epidermal and cortical developmental programs are synchronized by a yet-to-be-identified signal that is transmitted from the outer to the inner cell layers of the root. Using a new allele of the Medicago truncatula mutant Lumpy Infections, lin-4, which forms normal infection pockets but cannot initiate infection threads, we show that infection thread initiation is required for normal nodule development. lin-4 forms nodules with centrally located vascular bundles similar to that found in lateral roots rather than the peripheral vasculature characteristic of legume nodules. The same phenomenon was observed in M. truncatula plants inoculated with the Sinorhizobium meliloti exoY mutant, and the M. truncatula vapyrin-2 mutant, all cases where infections arrest. Nodules on lin-4 have reduced expression of the nodule meristem marker MtCRE1 and do not express root-tip markers. In addition, these mutant nodules have altered patterns of gene expression for the cytokinin and auxin markers CRE1 and DR5. Our work highlights the coordinating role that bacterial infection exerts on the developing nodule and allows us to draw comparisons with primitive actinorhizal nodules and rhizobia-induced nodules on the nonlegume Parasponia andersonii.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia , Alelos , Citocininas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ácidos Indolacéticos/metabolismo , Medicago truncatula/citologia , Medicago truncatula/genética , Mutação , Fixação de Nitrogênio , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/microbiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Simbiose
8.
Polymers (Basel) ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631530

RESUMO

In recent years, there has been a growing utilization of lightweight engineered cementitious composites (LECC) for the reinforcement and restoration of contemporary building structures. This study focuses on the incorporation of zeolite, serving as an internal reservoir for moisture maintenance, and examines its impact on various performance indicators, including apparent density, compressive strength, tensile strength, and autogenous shrinkage. Additionally, the influence of zeolite on the tensile and ductile properties of LECC is elucidated with the aid of scanning electron microscopy (SEM). The findings reveal that the addition of zeolite enables the preservation of excellent mechanical properties of LECC while further reducing its density. Notably, the introduction of a substantial amount of zeolite leads to a decrease in matrix density, average crack width, and ultimate tensile strain. The ultimate tensile strain exceeds 8% to reach 8.1%, while the decrease in compressive and tensile strengths is marginal. Zeolite's internal curing capability facilitates the complete hydration of unhydrated cement, concurrently alleviating the autogenous shrinkage of LECC. Consequently, the durability and reliability of the material are enhanced. The ability of zeolite, with its porous framework structure, to significantly improve the ultimate tensile strain of the matrix can be attributed to the amplified occurrence of active defects and a shift in the pull-out mode of PE fibers from "pull-out" to "pull-through". This study presents a promising alternative material in the field of engineering, holding potential for diverse building and infrastructure projects, as it enhances their durability and reliability.

9.
Cell Prolif ; 56(12): e13500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37246473

RESUMO

The activation of hepatic stellate cells (HSCs) is the main cause of liver fibrogenesis in response to different etiologies of chronic liver injuries. HSCs are heterogeneous, but the lack of specific markers to distinguish different HSC subset hinders the development of targeted therapy for liver fibrosis. In this study, we aim to reveal new HSC subsets by cell fate tracking. We constructed a novel ReelinCreERT2 transgenic mouse model to track the fate of cells expressing Reelin and their progeny (Reelin+ cells). And we investigated the property of Reelin+ cells, such as differentiation and proliferation, in hepatotoxic (carbon tetrachloride; CCl4 ) or cholestatic (bile duct ligation; BDL) liver injury models by immunohistochemistry. Our study revealed that Reelin+ cells were a new HSC subset. In terms of activation, migration, and proliferation, Reelin+ HSCs displayed different properties from Desmin+ HSCs (total HSCs) in cholestatic liver injury model but shared similar properties to total HSCs in hepatotoxic liver injury model. Besides, we did not find evidence that Reelin+ HSCs transdifferentiated into hepatocytes or cholangiocytes through mesenchymal-epithelial transition (MET). In this study, our genetic cell fate tracking data reveal that ReelinCreERT2-labelled cells are a new HSC subset, which provides new insights into targeted therapy for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Fígado , Camundongos , Animais , Células Estreladas do Fígado/patologia , Desmina , Fígado/patologia , Cirrose Hepática/patologia , Camundongos Transgênicos , Tetracloreto de Carbono/toxicidade , Proliferação de Células
10.
Exp Ther Med ; 22(6): 1469, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737809

RESUMO

Podocyte apoptosis is a key risk factor for the progression of kidney diseases. MicroRNA (miR)-199b-5p has been shown to be involved in cell apoptosis. However, the molecular mechanisms of miR-199b-5p in podocyte apoptosis remain uncertain. Thus, the present study aimed to investigate whether miR-199b-5p participates in the regulation of podocyte apoptosis and to elucidate the involved mechanisms of this process. A podocyte apoptosis model was constructed using adriamycin (ADR) in vitro. miR-199b-5p mimic and inhibitor were transfected in podocytes to change the expression level of miR-199b-5p. RNA expression was examined by reverse transcription-quantitative PCR. Western blotting was used to measure protein expression. Apoptosis was monitored via flow cytometry and detection of apoptosis-associated proteins. The results from the present study demonstrated that miR-199b-5p was upregulated and that regulator of G-protein signaling 10 (RGS10) was downregulated in ADR-stimulated podocytes. Overexpression of miR-199b-5p could inhibit RGS10 expression and stimulate podocyte apoptosis, whereas miR-199b-5p knockdown restored the levels of RGS10 and ameliorated podocyte apoptosis in ADR-induced podocytes. Furthermore, the effects of miR-199b-5p overexpression could be significantly reversed by RGS10 overexpression. In addition, podocyte transfection of miR-199b-5p activated the AKT/mechanistic target of rapamycin (mTOR) signaling, which was blocked following RGS10 overexpression. Taken together, the present study demonstrated that miR-199b-5p upregulation could promote podocyte apoptosis by inhibiting the expression of RGS10 through the activation of AKT/mTOR signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA