Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 174(5): 1172-1187.e16, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078712

RESUMO

Synapses are semi-membraneless, protein-dense, sub-micron chemical reaction compartments responsible for signal processing in each and every neuron. Proper formation and dynamic responses to stimulations of synapses, both during development and in adult, are fundamental to functions of mammalian brains, although the molecular basis governing formation and modulation of compartmentalized synaptic assemblies is unclear. Here, we used a biochemical reconstitution approach to show that, both in solution and on supported membrane bilayers, multivalent interaction networks formed by major excitatory postsynaptic density (PSD) scaffold proteins led to formation of PSD-like assemblies via phase separation. The reconstituted PSD-like assemblies can cluster receptors, selectively concentrate enzymes, promote actin bundle formation, and expel inhibitory postsynaptic proteins. Additionally, the condensed phase PSD assemblies have features that are distinct from those in homogeneous solutions and fit for synaptic functions. Thus, we have built a molecular platform for understanding how neuronal synapses are formed and dynamically regulated.


Assuntos
Neurogênese , Plasticidade Neuronal , Densidade Pós-Sináptica , Sinapses/fisiologia , Animais , Encéfalo/fisiologia , Proteína 4 Homóloga a Disks-Large/fisiologia , Hipocampo/fisiologia , Luz , Camundongos , Microscopia Confocal , Neurônios/fisiologia , Espalhamento de Radiação , Transdução de Sinais , Transmissão Sináptica
2.
Phys Rev Lett ; 132(4): 044002, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335359

RESUMO

Room-temperature ionic liquids (RTILs) are intriguing fluids that have drawn much attention in applications ranging from tribology and catalysis to energy storage. With strong electrostatic interaction between ions, their interfacial behaviors can be modulated by controlling energetics of the electrified interface. In this work, we report atomic-force-microscope measurements of contact angle hysteresis (CAH) of a circular contact line formed on a micron-sized fiber, which is coated with a thin layer of conductive film and intersects an RTIL-air interface. The measured CAH shows a distinct change by increasing the voltage U applied on the fiber surface. Molecular dynamics simulations were performed to illustrate variations of the solidlike layer in the RTIL adsorbed at the electrified interface. The integrated experiments and computations demonstrate a new mechanism to manipulate the CAH by rearrangement of interfacial layers of RTILs induced by the surface energetics.

3.
Phys Rev Lett ; 132(8): 084003, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457705

RESUMO

We report direct atomic force microscopy measurements of pinning-depinning dynamics of a circular moving contact line (CL) over the rough surface of a micron-sized vertical hanging glass fiber, which intersects a liquid-air interface. The measured capillary force acting on the CL exhibits sawtoothlike fluctuations, with a linear accumulation of force of slope k (stick) followed by a sharp release of force δf, which is proportional to the CL slip length. From a thorough analysis of a large volume of the stick-slip events, we find that the local maximal force F_{c} needed for CL depinning follows the extreme value statistics and the measured δf follows the avalanche dynamics with a power law distribution in good agreement with the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. The experiment provides an accurate statistical description of the CL dynamics at mesoscale, which has important implications to a common class of problems involving stick-slip motion in a random defect or roughness landscape.

4.
Langmuir ; 39(43): 15401-15408, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37857566

RESUMO

Despite intensive investigations on the droplet receding contact angle on superhydrophobic surfaces, i.e., a key parameter characterizing surface wettability and adhesion, the quantitative correlation between the surface structure mechanical properties (softness) and the droplet receding contact angles remains vague. By systematically varying the geometric dimensions and mechanical properties of soft pillar arrays, we find that the droplet receding contact angles decrease with the decrease in the pillar spring constant. Most surprisingly, the densely packed pillar arrays may result in larger receding contact angles than those on sparsely packed pillars, opposing the understanding of rigid pillar arrays, where the receding contact angles increase with a decrease in the packing density of pillars. This is attributed to the collective effects of capillarity and elasticity, where the energy consumed by the sliding contact line, the energy stored in the distorted liquid-vapor interface, and the energy stored in the deflected pillar contribute to the droplet depinning characteristics. We develop an analytical model to predict the droplet receding contact angles on soft superhydrophobic pillar arrays with knowledge of the material intrinsic receding contact angle, the pillar geometry, and the pillar mechanical properties. The predictions are corroborated by the experimental data measured in this and prior studies.

5.
Soft Matter ; 19(29): 5443-5451, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395080

RESUMO

The mechanical response and relaxation behavior of hydrogels are crucial to their diverse functions and applications. However, understanding how stress relaxation depends on the material properties of hydrogels and accurately modeling relaxation behavior at multiple time scales remains a challenge for soft matter mechanics and soft material design. While a crossover phenomenon in stress relaxation has been observed in hydrogels, living cells, and tissues, little is known about how the crossover behavior and characteristic crossover time depend on material properties. In this study, we conducted systematic atomic-force-microscopy (AFM) measurements of stress relaxation in agarose hydrogels with varying types, indentation depths, and concentrations. Our findings show that the stress relaxation of these hydrogels features a crossover from short-time poroelastic relaxation to long-time power-law viscoelastic relaxation at the micron scale. The crossover time for a poroelastic-dominant hydrogel is determined by the length scale of the contact and diffusion coefficient of the solvent inside the gel network. In contrast, for a viscoelastic-dominant hydrogel, the crossover time is closely related to the shortest relaxation time of the disordered network. We also compared the stress relaxation and crossover behavior of hydrogels with those of living cells and tissues. Our experimental results provide insights into the dependence of crossover time on poroelastic and viscoelastic properties and demonstrate that hydrogels can serve as model systems for studying a wide range of mechanical behaviors and emergent properties in biomaterials, living cells, and tissues.

6.
Small ; 18(39): e2203872, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045100

RESUMO

The development of multifunctional and robust swimming microrobots working at the free air-liquid interface has encountered challenge as new manipulation strategies are needed to overcome the complicated interfacial restrictions. Here, flexible but reliable mechanisms are shown that achieve a remote-control bubble microrobot with multiple working modes and high maneuverability by the assistance of a soft air-liquid interface. This bubble microrobot is developed from a hollow Janus microsphere (JM) regulated by a magnetic field, which can implement switchable working modes like pusher, gripper, anchor, and sweeper. The collapse of the microbubble and the accompanying directional jet flow play a key role for functioning in these working modes, which is analogous to a "bubble tentacle." Using a simple gamepad, the orientation and the navigation of the bubble microrobot can be easily manipulated. In particular, a speed modulation method is found for the bubble microrobot, which uses vertical magnetic field to control the orientation of the JM and the direction of the bubble-induced jet flow without changing the fuel concentration. The findings demonstrate a substantial advance of the bubble microrobot specifically working at the air-liquid interface and depict some nonintuitive mechanisms that can help develop more complicated microswimmers.


Assuntos
Microbolhas , Água , Campos Magnéticos
7.
Phys Rev Lett ; 124(18): 188003, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441979

RESUMO

We report direct atomic-force-microscope measurements of capillary force hysteresis (CFH) of a circular contact line (CL) formed on a long glass fiber, which is coated with a thin layer of soft polymer film and intersects a water-air interface. The measured CFH shows a distinct overshoot for the depinning of a static CL, and the overshoot amplitude grows logarithmically with both the hold time τ and fiber speed V. A unified model based on the slow growth of a wetting ridge and force-assisted barrier crossing is developed to explain the observed time (or state) and speed (or rate) dependent CL depinning dynamics over an aging soft surface. The experimental findings have important implications to a common class of problems involving depinning dynamics in a defect or roughness landscape, such as friction of solid interfaces.

8.
Biophys J ; 112(2): 398-409, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122225

RESUMO

Most organs contain interconnected tubular tissues that are one-cell-thick, polarized epithelial monolayers enclosing a fluid-filled lumen. Such tissue organization plays crucial roles in developmental and normal physiology, and the proper functioning of these tissues depends on their regulation by complex biochemical perturbations and equally important, but poorly understood, mechanical perturbations. In this study, by combining micropatterning techniques and atomic force microscopy, we developed a simple in vitro experimental platform for characterizing the mechanical properties of the MDCK II cyst, the simplest model of lumen-enclosing epithelial monolayers. By using this platform, we estimated the elasticity of the cyst monolayer and showed that the presence of a luminal space influences cyst mechanics substantially, which could be attributed to polarization and tissue-level coordination. More interestingly, the results from force-relaxation experiments showed that the cysts also displayed tissue-level poroelastic characteristics that differed slightly from those of single cells. Our study provides the first quantitative findings, to our knowledge, on the tissue-level mechanics of well-polarized epithelial cysts and offers new insights into the interplay between cyst mechanics and cyst physiology. Moreover, our simple platform is a potentially useful tool for enhancing the current understanding of cyst mechanics in health and disease.


Assuntos
Engenharia Celular , Elasticidade , Células Epiteliais/citologia , Microscopia de Força Atômica , Microtecnologia , Animais , Fenômenos Biomecânicos , Cães , Células Madin Darby de Rim Canino
9.
Langmuir ; 33(6): 1385-1390, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28094528

RESUMO

We report the noncontact measurement of the viscoelastic property of polymer thin films in a liquid medium using frequency-modulation atomic force microscopy with a newly developed long-needle probe. The probe contains a long vertical glass fiber with one end adhered to a cantilever beam and the other end with a sharp tip placed near the liquid-film interface. The nanoscale flow generated by the resonant oscillation of the needle tip provides a precise hydrodynamic force acting on the soft surface of the thin film. By accurately measuring the mechanical response of the thin film, we obtain the elastic and loss moduli of the thin film using the linear response theory of elastohydrodynamics. The experiment verifies the theory and demonstrates its applications. The technique can be used to accurately measure the viscoelastic property of soft surfaces, such as those made of polymers, nanobubbles, live cells, and tissues.

10.
Phys Rev Lett ; 116(6): 066102, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26919000

RESUMO

We report on direct atomic-force-microscope measurements of capillary force hysteresis (CFH) and relaxation of a circular moving contact line (CL) formed on a long micron-sized hydrophobic fiber intersecting a water-air interface. The measured CFH and CL relaxation show a strong asymmetric speed dependence in the advancing and receding directions. A unified model based on force-assisted barrier crossing is utilized to find the underlying energy barrier Eb and size λ associated with the defects on the fiber surface. The experiment demonstrates that the pinning (relaxation) and depinning dynamics of the CL can be described by a common microscopic framework, and the advancing and receding CLs are influenced by two different sets of relatively wetting and nonwetting defects on the fiber surface.

11.
Adv Sci (Weinh) ; 11(29): e2403867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38773950

RESUMO

Artificial micro/nanomotors using active particles hold vast potential in applications such as drug delivery and microfabrication. However, upgrading them to micro/nanorobots capable of performing precise tasks with sophisticated functions remains challenging. Bubble microthruster (BMT) is introduced, a variation of the bubble-driven microrobot, which focuses the energy from a collapsing microbubble to create an inertial impact on nearby target microparticles. Utilizing ultra-high-speed imaging, the microparticle mass and density is determined with sub-nanogram resolution based on the relaxation time characterizing the microparticle's transient response. Master curves of the BMT method are shown to be dependent on the viscosity of the solution. The BMT, controlled by a gamepad with magnetic-field guidance, precisely manipulates target microparticles, including bioparticles. Validation involves measuring the polystyrene microparticle mass and hollow glass microsphere density, and assessing the mouse embryo mass densities. The BMT technique presents a promising chip-free, real-time, highly maneuverable strategy that integrates bubble microrobot-based manipulation with precise bioparticle mass and density detection, which can facilitate microscale bioparticle characterizations such as embryo growth monitoring.

12.
Carcinogenesis ; 34(8): 1728-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23580587

RESUMO

The metabolism that sustains cancer cells is adapted preferentially to glycolysis, even under aerobic conditions (Warburg effect). This effect was one of the first alterations in cancer cells recognized as conferring a survival advantage. In this study, we show that gene associated with retinoid-interferon-induced mortality-19 (GRIM-19), which was previously identified as a tumor suppressor protein associated with growth inhibition and cell apoptosis, contributes to the switch between oxidative and glycolytic pathways. In parallel to this, vascular endothelial growth factor, which promotes neovascularization, is also regulated. We have identified hypoxia-inducible factor 1α (HIF1α) as the downstream factor of GRIM-19 in human glioblastoma cell lines. Downregulation of GRIM-19 promotes HIF1α synthesis in a STAT3-dependent manner, which acts as a potential competitive inhibitor for von Hippel-Lindau (pVHL)-HIF1α interaction, and thereby prevents HIF1α from pVHL-mediated ubiquitination and proteasomal degradation. Taken together, it is concluded that GRIM-19, a potential tumor suppressor gene, performs its function in part via regulating glioblastoma metabolic reprogramming through STAT3-HIF1α signaling axis, and this has added new perspective to its role in tumorigenesis, thus providing potential strategies for tumor metabolic therapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Respiração Celular/genética , Regulação para Baixo , Células Endoteliais/metabolismo , Glicólise/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Dev Cell ; 58(11): 919-932.e5, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37098348

RESUMO

Interfacial tension governs the behaviors and physiological functions of multiple biological condensates during diverse biological processes. Little is known about whether there are cellular surfactant factors that regulate the interfacial tension and functions of biological condensates within physiological environments. TFEB, a master transcription factor that controls expression of autophagic-lysosomal genes, assembles into transcriptional condensates to control the autophagy-lysosome pathway (ALP). Here, we show that interfacial tension modulates the transcriptional activity of TFEB condensates. MLX, MYC, and IPMK act as synergistic surfactants to decrease the interfacial tension and consequent DNA affinity of TFEB condensates. The interfacial tension of TFEB condensates is quantitatively correlated to their DNA affinity and subsequent ALP activity. The interfacial tension and DNA affinity of condensates formed by TAZ-TEAD4 are also regulated by the synergistic surfactant proteins RUNX3 and HOXA4. Our results indicate that the interfacial tension and functions of biological condensates can be controlled by cellular surfactant proteins in human cells.


Assuntos
Lisossomos , Tensoativos , Humanos , Tensoativos/farmacologia , Tensoativos/metabolismo , Lisossomos/metabolismo , Autofagia/fisiologia , Proteínas/metabolismo , Genes Homeobox , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Domínio TEA
14.
Bioengineering (Basel) ; 10(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978775

RESUMO

The effect of extracellular matrix (ECM) stiffness on embryonic trophoblast cells invasion during mammalian embryo implantation remains largely unknown. In this study, we investigated the effects of ECM stiffness on various aspects of human trophoblast cell behaviors during cell-ECM interactions. The mechanical microenvironment of the uterus was simulated by fabricating polyacrylamide (PA) hydrogels with different levels of stiffness. The human choriocarcinoma (JAR) cell lineage was used as the trophoblast model. We found that the spreading area of JAR cells, the formation of focal adhesions, and the polymerization of the F-actin cytoskeleton were all facilitated with increased ECM stiffness. Significantly, JAR cells also exhibited durotactic behavior on ECM with a gradient stiffness. Meanwhile, stiffness of the ECM affects the invasion of multicellular JAR spheroids. These results demonstrated that human trophoblast cells are mechanically sensitive, while the mechanical properties of the uterine microenvironment could play an important role in the implantation process.

15.
Nat Commun ; 14(1): 5166, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620390

RESUMO

Cell migration plays important roles in many biological processes, but how migrating cells orchestrate intracellular molecules and subcellular structures to regulate their speed and direction is still not clear. Here, by characterizing the intracellular diffusion and the three-dimensional lamellipodium structures of fish keratocyte cells, we observe a strong positive correlation between the intracellular diffusion and cell migration speed and, more importantly, discover a switching of cell migration modes with reversible intracellular diffusion variation and lamellipodium structure deformation. Distinct from the normal fast mode, cells migrating in the newly-found slow mode have a deformed lamellipodium with swollen-up front and thinned-down rear, reduced intracellular diffusion and compartmentalized macromolecule distribution in the lamellipodium. Furthermore, in turning cells, both lamellipodium structure and intracellular diffusion dynamics are also changed, with left-right symmetry breaking. We propose a mechanism involving the front-localized actin polymerization and increased molecular crowding in the lamellipodium to explain how cells spatiotemporally coordinate the intracellular diffusion dynamics and the lamellipodium structure in regulating their migrations.


Assuntos
Eritrócitos Anormais , Pseudópodes , Animais , Movimento Celular , Difusão
16.
J Cell Physiol ; 227(3): 1212-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22105514

RESUMO

UNLABELLED: Genes associated with retinoid-interferon-induced mortality 19 (GRIM-19) was identified as a tumor suppressor protein associated with apoptosis and growth inhibition. Here, we report that the expression levels of GRIM-19 are significantly attenuated in hepatocellular carcinoma (HCC) patients with deteriorating differentiation states, hepatic capsule invasion and microvascular invasion, suggesting the potential role of GRIM-19 not only at the origin but also in the invasive progression of HCCs. To dissect the possible mechanisms by which GRIM-19 regulates tumor cell invasion, we established the hepatic HL-7702 and HCC Huh-7 cell lines stably depleted of GRIM-19. Results show that downregulation of GRIM-19 induces a morphological transformation resembling epithelial-mesenchymal transition (EMT) as well as aberrant expression of epithelial and mesenchymal molecular markers. Additionally, these cells lose contact inhibition, a phenomenon of cessation of cell migration in contact with neighboring cells, as assessed by cell imaging, growth curve and S-phase transition in confluent conditions. CONCLUSION: Our observations demonstrate a novel mechanistic insight into a critical role of GRIM-19 in HCC invasive potential.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Inibição de Contato/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/patologia , NADH NADPH Oxirredutases/fisiologia , Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , NADH NADPH Oxirredutases/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Interferente Pequeno/farmacologia , Células Tumorais Cultivadas
17.
ACS Nano ; 16(10): 16054-16066, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36149751

RESUMO

The diffusion and mobility in biomembranes are crucial for various cell functions; however, the mechanisms involved in such processes remain ambiguous due to the complex membrane structures. Herein, we investigate how the heterogeneous nanostructures cause anomalous diffusion in dipalmitoylphosphatidylcholine (DPPC) monolayers. By identifying the existence of condensed nanodomains and clarifying their impact, our findings renew the understanding of the hydrodynamic description and the statistical feature of the diffusion in the monolayers. We find a universal characteristic of the multistage mean square displacement (MSD) with an intermediate crossover, signifying two membrane viscosities at different scales: the short-time scale describes the local fluidity and is independent of the nominal DPPC density, and the long-time scale represents the global continuous phase taking into account nanodomains and increases with DPPC density. The constant short-time viscosity reflects a dynamic equilibrium between the continuous fluid phase and the condensed nanodomains in the molecular scale. Notably, we observe an "anomalous yet Brownian" phenomenon exhibiting an unusual double-peaked displacement probability distribution (DPD), which is attributed to the net dipolar repulsive force from the heterogeneous nanodomains around the microdomains. The findings provide physical insights into the transport of membrane inclusions that underpin various biological functions and drug deliveries.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Nanoestruturas , 1,2-Dipalmitoilfosfatidilcolina/química , Difusão , Nanoestruturas/química , Bicamadas Lipídicas/química
18.
J Cell Biol ; 221(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35293953

RESUMO

Very little is known about how the material properties of protein condensates assembled via liquid-liquid phase separation (LLPS) are maintained and affect physiological functions. Here we show that liquid-like condensates of the transcription factor TFEB exhibit low fusion propensity in vitro and in living cells. We directly measured the attraction force between droplets, and we characterized the interfacial tension, viscosity, and elasticity of TFEB condensates. TFEB condensates contain rigid interfacial boundaries that govern their interaction behaviors. Several small molecules, including Ro-3306, modify the material properties of TFEB condensates, increasing their size and fusion propensity. These compounds promote lysosomal biogenesis and function in a TFEB-dependent manner without changing its cytoplasmic-nuclear translocation. Ro-3306 promotes autophagy activity, facilitating degradation of toxic protein aggregates. Our study helps explain how protein condensates are maintained as physically separate entities and reveals that the material properties of TFEB condensates can be harnessed to modulate TFEB activity.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Lisossomos/metabolismo , Transporte Proteico , Proteínas/metabolismo
19.
Sci Adv ; 7(37): eabh3051, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516762

RESUMO

Light-driven swimming actuators with different motion modes could lead to many previously unachievable applications. However, controllable navigation often requires focusing light precisely on certain positions of the actuator, which is unfavorable for accurate dynamical operation or in microscale applications. Here, we present a type of programmable swimming actuators that can execute wavelength-dependent multidirectional motions via the Marangoni effect. Several multi­degree of freedom swimming motions have been realized: Forward-and-backward and zigzag actuators can execute one-dimensional (1D) and 2D linear motion, respectively; bidirectional gear rotation as angular motion can be regulated to obtain tunable speeds; and the turning actuator as a "freighter" is able to turn left, right, and go straight for precise maze navigation. A mechanical measurement system is established to quantitatively measure the driving force of the motion directly. The accessible wavelength-selective strategy presented here can inspire further explorations of simple and practical light-driven materials and systems.

20.
Front Pharmacol ; 12: 685982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354585

RESUMO

Edible bird's nest (EBN) has been consumed as a Chinese delicacy for hundreds of years; the functions of which have been proposed to prevent lung disease, strengthen immune response, and restore skin youthfulness. To support the skin function of EBN, the water extract and the enzymatic digest of EBN with enriched digested peptides were tested in cultured keratinocyte, HaCaT cell line. The effects of EBN extract and digest in inducing proteins crucial for skin moisturizing were determined in both in vitro and ex vivo models. In cultured keratinocytes, the expressions of S100-fused type proteins contributing to skin barrier function in the stratum corneum, e.g. filaggrin and filaggrin-2, were determined in both mRNA and protein levels, which were markedly induced in the treatment of EBN extract or digest. The EBN-induced gene transcriptions of filaggrin and filaggrin-2 were mediated by activation of p38 MAPK pathway and various transcription factors, e.g. GATA3, PPARα, PPARß, and PPARγ: these transcriptional factors were markedly activated by the digested products of EBN, as compared to the extract, in cultured keratinocytes. By using atomic force microscopy (AFM), the EBN-treated keratinocyte was shown to have more liquid-like morphology, as compared to a control cell. The EBN digest showed better induction on these moisturizing effects as compared to the extract. These lines of evidence therefore suggested the water moisturizing effect of EBN in skin function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA