Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 13, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914938

RESUMO

BACKGROUND: Pectin methylesterase (PME) is a hydrolytic enzyme that catalyzes the demethylesterification of homogalacturonans and controls pectin reconstruction, being essential in regulation of cell wall modification. During fruit ripening stage, PME-mediated cell wall remodeling is an important process to determine fruit firmness and softening. Strawberry fruit is a soft fruit with a short postharvest life, due to a rapid loss of firm texture. Hence, preharvest improvement of strawberry fruit rigidity is a prerequisite for extension of fruit refreshing time. Although PME has been well characterized in model plants, knowledge regarding the functionality and evolutionary property of PME gene family in strawberry remain limited. RESULTS: A total of 54 PME genes (FvPMEs) were identified in woodland strawberry (Fragaria vesca 'Hawaii 4'). Phylogeny and gene structure analysis divided these FvPME genes into four groups (Group 1-4). Duplicate events analysis suggested that tandem and dispersed duplications effectively contributed to the expansion of the PME family in strawberry. Through transcriptome analysis, we identified FvPME38 and FvPME39 as the most abundant-expressed PMEs at fruit ripening stages, and they were positively regulated by abscisic acid. Genetic manipulation of FvPME38 and FvPME39 by overexpression and RNAi-silencing significantly influences the fruit firmness, pectin content and cell wall structure, indicating a requirement of PME for strawberry fruit softening. CONCLUSION: Our study globally analyzed strawberry pectin methylesterases by the approaches of phylogenetics, evolutionary prediction and genetic analysis. We verified the essential role of FvPME38 and FvPME39 in regulation of strawberry fruit softening process, which provided a guide for improving strawberry fruit firmness by modifying PME level.


Assuntos
Hidrolases de Éster Carboxílico/genética , Fragaria , Frutas/metabolismo , Pectinas/metabolismo , Ácido Abscísico/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Genes de Plantas , Filogenia , Interferência de RNA
2.
BMC Plant Biol ; 19(1): 528, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783789

RESUMO

BACKGROUND: Axillary buds allow the production of either vegetative or reproductive shoots, which display a plastic developmental potential of the plant to suit the prevailing environmental changes. Strawberry represents one of many plant species which displays horizontal above-ground growth of shoot development for asexual reproduction. Two distinct runner growth patterns exist in different strawberry species: one is called sympodial type such as Fragaria vesca, and the other one is called monopodial type such as Fragaria pentaphylla. Despite the runner growth morphology of these strawberry species have been well known, the mechanisms that determine the distinct patterns have rarely been reported. RESULTS: In this study, we used Fragaria vesca Hawaii-4 and Fragaria pentaphylla as model species, and captured the initiated dormant bud and non-dormant bud as materials to compare their transcriptome profiles and phytohormone content. Comparisons revealed that relatively higher auxin activity is present in the dormant bud and relatively higher cytokinin activity is in the non-dormant bud. Decapitation and pharmacological experiments on dormant buds showed that the reduction of auxin accumulation triggers the regeneration of vegetative shoots in dormant buds, and exogenous cytokinin application triggers cell fate turnover and generation of reproductive shoots. CONCLUSION: Here, we uncover a mechanism by which auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. Our results suggest a contrasting behavior of auxin and cytokinin in control of axillary bud development, facilitating a preliminary understanding of shoot architecture formation in strawberry.


Assuntos
Citocininas/metabolismo , Fragaria/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Dormência de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Citocininas/farmacologia , Espécies em Perigo de Extinção , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA