Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
PLoS Biol ; 22(3): e3002515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512963

RESUMO

The signaling environment, or niche, often governs the initial difference in behavior of an adult stem cell and a derivative that initiates a path towards differentiation. The transition between an instructive stem cell niche and differentiation niche must generally have single-cell resolution, suggesting that multiple mechanisms might be necessary to sharpen the transition. Here, we examined the Drosophila ovary and found that Cap cells, which are key constituents of the germline stem cell (GSC) niche, express a conserved microRNA (miR-124). Surprisingly, loss of miR-124 activity in Cap cells leads to a defect in differentiation of GSC derivatives. We present evidence that the direct functional target of miR-124 in Cap cells is the epidermal growth factor receptor (EGFR) and that failure to limit EGFR expression leads to the ectopic expression of a key anti-differentiation BMP signal in neighboring somatic escort cells (ECs), which constitute a differentiation niche. We further found that Notch signaling connects EFGR activity in Cap cells to BMP expression in ECs. We deduce that the stem cell niche communicates with the differentiation niche through a mechanism that begins with the selective expression of a specific microRNA and culminates in the suppression of the major anti-differentiation signal in neighboring cells, with the functionally important overall role of sharpening the spatial distinction between self-renewal and differentiation environments.


Assuntos
Proteínas de Drosophila , MicroRNAs , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , Ovário/metabolismo , Proteínas de Drosophila/metabolismo , Nicho de Células-Tronco/genética , Diferenciação Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células-Tronco/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Comunicação , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo
2.
Plant Physiol ; 191(1): 772-788, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342207

RESUMO

Plants sense and respond to fluctuating temperature and light conditions during the circadian cycle; however, the molecular mechanism underlying plant adaptability during daytime warm conditions remains poorly understood. In this study, we reveal that the ectopic regulation of a HEAT RESPONSIVE PROTEIN (GhHRP) controls the adaptation and survival of cotton (Gossypium hirsutum) plants in response to warm conditions via modulating phytohormone signaling. Increased ambient temperature promptly enhanced the binding of the phytochrome interacting factor 4 (GhPIF4)/ethylene-insensitive 3 (GhEIN3) complex to the GhHRP promoter to increase its mRNA level. The ectopic expression of GhHRP promoted the temperature-dependent accumulation of GhPIF4 transcripts and hypocotyl elongation by triggering thermoresponsive growth-related genes. Notably, the upregulation of the GhHRP/GhPIF4 complex improved plant growth via modulating the abundance of Arabidopsis thaliana auxin biosynthetic gene YUCCA8 (AtYUC8)/1-aminocyclopropane-1-carboxylate synthase 8 (AtACS8) for fine-tuning the auxin/ethylene interplay, ultimately resulting in decreased ethylene biosynthesis. GhHRP thus protects chloroplasts from photo-oxidative bursts via repressing AtACS8 and AtACS7 and upregulating AtYUC8 and the heat shock transcription factors (HSFA2), heat shock proteins (HSP70 and HSP20). Strikingly, the Δhrp disruption mutant exhibited compromised production of HSP/YUC8 that resulted in an opposite phenotype with the loss of the ability to respond to warm conditions. Our results show that GhHRP is a heat-responsive signaling component that assists plants in confronting the dark phase and modulates auxin signaling to rescue growth under temperature fluctuations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Gossypium/genética , Gossypium/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Arabidopsis/metabolismo , Resposta ao Choque Térmico , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas
3.
Plant Biotechnol J ; 21(6): 1191-1205, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786225

RESUMO

In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions. B-CUT&Tag combines streptavidin-biotin-based DNA purification with routine CUT&Tag, optimizing the removal of large amounts of intact chromatin not targeted by specific TFs. The biotinylated chromatin fragments are then purified for construction of deep sequencing libraries or qPCR analysis. We applied B-CUT&Tag to probe genome-wide DNA targets of Squamosa promoter-binding-like protein 9 (SPL9), a well-established TF in Arabidopsis; the resulting profiles were efficient and consistent in demonstrating its well-established target genes in juvenile-adult transition/flowering, trichome development, flavonoid biosynthesis, wax synthesis and branching. Interestingly, our results indicate functions of AtSPL9 in modulating growth-defence trade-offs. In addition, we established a method for applying qPCR after CUT&Tag (B-CUT&Tag-qPCR) and successfully validated the binding of SPL9 in Arabidopsis and PHR2 in rice. Our study thus provides a convenient and highly efficient CUT&Tag strategy for profiling TF-chromatin interactions that is widely applicable to the annotation of cis-regulatory elements for crop improvement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA/genética , DNA/metabolismo , Cromatina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Plant Biotechnol J ; 20(9): 1770-1785, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633313

RESUMO

After polyploidization originated from one interspecific hybridization event in Gossypium, Gossypium barbadense evolved to produce extra-long staple fibres than Gossypium hirsutum (Upland cotton), which produces a higher fibre yield. The genomic diversity between G. barbadense and G. hirsutum thus provides a genetic basis for fibre trait variation. Recently, rapid accumulation of gene disruption or deleterious mutation was reported in allotetraploid cotton genomes, with unknown impacts on fibre traits. Here, we identified gene disruptions in allotetraploid G. hirsutum (18.14%) and G. barbadense (17.38%) through comparison with their presumed diploid progenitors. Relative to conserved genes, these disrupted genes exhibited faster evolution rate, lower expression level and altered gene co-expression networks. Within a module regulating fibre elongation, a hub gene experienced gene disruption in G. hirsutum after polyploidization, with a 2-bp deletion in the coding region of GhNPLA1D introducing early termination of translation. This deletion was observed in all of the 34 G. hirsutum landraces and 36 G. hirsutum cultivars, but not in 96% of 57 G. barbadense accessions. Retrieving the disrupted gene GhNPLA1D using its homoeolog GhNPLA1A achieved longer fibre length in G. hirsutum. Further enzyme activity and lipids analysis confirmed that GhNPLA1A encodes a typical phospholipase A and promotes cotton fibre elongation via elevating intracellular levels of linolenic acid and 34:3 phosphatidylinositol. Our work opens a strategy for identifying disrupted genes and retrieving their functions in ways that can provide valuable resources for accelerating fibre trait enhancement in cotton breeding.


Assuntos
Fibra de Algodão , Melhoramento Vegetal , Genes de Plantas/genética , Gossypium/genética , Fosfolipases/genética
5.
Plant Physiol ; 186(4): 2152-2168, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33871645

RESUMO

The genomic shock of whole-genome duplication (WGD) and hybridization introduces great variation into transcriptomes, for both coding and noncoding genes. An altered transcriptome provides a molecular basis for improving adaptation during the evolution of new species. The allotetraploid cotton, together with the putative diploid ancestor species compose a fine model for study the rapid gene neofunctionalization over the genome shock. Here we report on Drought-Associated Non-coding gene 1 (DAN1), a long intergenic noncoding RNA (lincRNA) that arose from the cotton progenitor A-diploid genome after hybridization and WGD events during cotton evolution. DAN1 in allotetraploid upland cotton (Gossypium hirsutum) is a drought-responsive lincRNA predominantly expressed in the nucleoplasm. Chromatin isolation by RNA purification profiling and electrophoretic mobility shift assay analysis demonstrated that GhDAN1 RNA can bind with DNA fragments containing AAAG motifs, similar to DNA binding with one zinc finger transcription factor binding sequences. The suppression of GhDAN1 mainly regulates genes with AAAG motifs in auxin-response pathways, which are associated with drought stress regulation. As a result, GhDAN1-silenced plants exhibit improved tolerance to drought stress. This phenotype resembles the drought-tolerant phenotype of the A-diploid cotton ancestor species, which has an undetectable expression of DAN1. The role of DAN1 in cotton evolution and drought tolerance regulation suggests that the genomic shock of interspecific hybridization and WGD stimulated neofunctionalization of non-coding genes during the natural evolutionary process.


Assuntos
Secas , Gossypium/genética , Poliploidia , RNA Longo não Codificante/genética , RNA de Plantas/genética , Estresse Fisiológico/genética
6.
Proc Natl Acad Sci U S A ; 116(10): 4716-4721, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765516

RESUMO

Seed germination is an energy demanding process that requires functional mitochondria upon imbibition. However, how mitochondria fine tune seed germination, especially in response to the dynamics of environmental temperature, remains largely unknown at the molecular level. Here, we report a mitochondrial matrix-localized heat shock protein GhHSP24.7, that regulates seed germination in a temperature-dependent manner. Suppression of GhHSP24.7 renders the seed insensitive to temperature changes and delays germination. We show that GhHSP24.7 competes with GhCCMH to bind to the maturation subunit protein GhCcmFc to form cytochrome C/C1 (CytC/C1) in the mitochondrial electron transport chain. GhHSP24.7 modulates CytC/C1 production to induce reactive oxygen species (ROS) generation, which consequently accelerates endosperm rupture and promotes seed germination. Overexpression of GhHSP24.7's homologous genes can accelerate seed germination in Arabidopsis and tomato, indicating its conserved function across plant species. Therefore, HSP24.7 is a critical factor that positively controls seed germination via temperature-dependent ROS generation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Gossypium/fisiologia , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sensação Térmica , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Germinação , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Proteínas de Choque Térmico/genética , Temperatura Alta , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Mitocôndrias/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Sementes/fisiologia
7.
BMC Genomics ; 22(1): 443, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120591

RESUMO

BACKGROUND: An evolutionary model using diploid and allotetraploid cotton species identified 80 % of non-coding transcripts in allotetraploid cotton as being uniquely activated in comparison with its diploid ancestors. The function of the lncRNAs activated in allotetraploid cotton remain largely unknown. RESULTS: We employed transcriptome analysis to examine the relationship between the lncRNAs and mRNAs of protein coding genes (PCGs) in cotton leaf tissue under abiotic stresses. LncRNA expression was preferentially associated with that of the flanking PCGs. Selected highly-expressed lncRNA candidates (n = 111) were subjected to a functional screening pilot test in which virus-induced gene silencing was integrated with abiotic stress treatment. From this low-throughput screen, we obtained candidate lncRNAs relating to plant height and tolerance to drought and other abiotic stresses. CONCLUSIONS: Low-throughput screen is an effective method to find functional lncRNA for further study. LncRNAs were more active in abiotic stresses than PCG expression, especially temperature stress. LncRNA XLOC107738 may take a cis-regulatory role in response to environmental stimuli. The degree to which lncRNAs are constitutively expressed may impact expression patterns and functions on the individual gene level rather than in genome-wide aggregate.


Assuntos
Gossypium , RNA Longo não Codificante , Secas , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , RNA Longo não Codificante/genética , Estresse Fisiológico/genética
8.
Plant Mol Biol ; 106(6): 521-531, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224063

RESUMO

KEY MESSAGE: We characterize a functional lincRNA, XH123 in cotton seedling in defense of cold stress. The silencing of XH123 leads to increased sensitivity to cold stress and the decay of chloroplast. Cotton, which originated from the arid mid-American region, is one of the most important cash crops worldwide. Cultivated cotton is now widely spread throughout high-altitude regions such as those in the far northwest of Asia. In such areas, spring temperatures below 12 ℃ impose cold stress on cotton seedlings, with concomitant threat of lost yield and productivity. It is documented that cold stress can induce differential expression of long noncoding RNAs (lncRNAs) in cotton; however, it is not yet clear if these cold-responsive lncRNAs are actively involved with tolerance of cold stress at the molecular level. Here, we select ten long intergenic non-coding RNAs as candidate genes and use virus-induced gene silencing and additional cold treatments to examine their roles in the response to cold stress during the cotton seedling stage. One such gene, XH123, was revealed to be involved in tolerance of cold stress. Specifically, XH123-silenced plants demonstrated sensitivity to cold stress, exhibiting chloroplast damage and increased endogenous levels of reactive oxygen species. The transcriptome profile of XH123-silenced seedlings was similar to that of cold-stressed seedlings having the known cold stress gene PIF3 silenced. These results imply that the lincRNA XH123 is actively involved with cold stress regulation in cotton during the seedling stage.


Assuntos
Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Gossypium/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Adaptação Fisiológica/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Temperatura Baixa , Inativação Gênica , Gossypium/crescimento & desenvolvimento , Microscopia Eletrônica de Transmissão , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , RNA-Seq/métodos , Plântula/genética , Plântula/crescimento & desenvolvimento
9.
Plant Biotechnol J ; 19(7): 1325-1336, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33448110

RESUMO

Interspecific genomic variation can provide a genetic basis for local adaptation and domestication. A series of studies have presented its role of interspecific haplotypes and introgressions in adaptive traits, but few studies have addressed their role in improving agronomic character. Two allotetraploid Gossypium species, Gossypium barbadense (Gb) and G. hirsutum (Gh) originating from the Americas, are cultivated independently. Here, through sequencing and the comparison of one GWAS panel in 229 Gb accessions and two GWAS panels in 491 Gh accessions, we found that most associated loci or functional haplotypes for agronomic traits were highly divergent, representing the strong divergent improvement between Gb and Gh. Using a comprehensive interspecific haplotype map, we revealed that six interspecific introgressions from Gh to Gb were significantly associated with the phenotypic performance of Gb, which could explain 5%-40% of phenotypic variation in yield and fibre qualities. In addition, three introgressions overlapped with six associated loci in Gb, indicating that these introgression regions were under further selection and stabilized during improvement. A single interspecific introgression often possessed yield-increasing potential but decreased fibre qualities, or the opposite, making it difficult to simultaneously improve yield and fibre qualities. Our study not only has proved the importance of interspecific functional haplotypes or introgressions in the divergent improvement of Gb and Gh, but also supports their potential value in further human-mediated hybridization or precision breeding.


Assuntos
Gossypium , Melhoramento Vegetal , Mapeamento Cromossômico , Fibra de Algodão , Domesticação , Gossypium/genética , Fenótipo
10.
BMC Plant Biol ; 20(1): 219, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414380

RESUMO

BACKGROUND: Phased small interfering RNA (phasiRNA) is primarily derived from the 22-nt miRNA targeting loci. GhMYB2, a gene with potential roles in cotton fiber cell fate determination, is a target gene of miR828 and miR858 in the generation of phasiRNAs. RESULTS: In the presented work, through the evaluation of phasing scores and phasiRNA distribution pattern, we found that phasiRNAs from GhMYB2 were derived from the 3' cleavage fragments of 22-nt miR828 and 21-nt miR858 respectively. These two miRNA targeting sites initiated two phasing frames on transcripts of one locus. By means of RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we further demonstrated that phasiRNAs derived from the two phasing frames played a role in cis-regulation of GhMYB2. The phasiRNAs derived from GhMYB2 were expressed in the somatic tissues, especially in anther and hypocotyl. We further employed our previous small RNA sequencing data as well as the degradome data of cotton fiber bearing ovules, anthers, hypocotyls and embryogenic calli tissues published in public databases, to validate the expression, phasing pattern and functions of phasiRNAs. CONCLUSIONS: The presenting research provide insights of the molecular mechanism of phasiRNAs in regulation of GhMYB2 loci.


Assuntos
Regulação da Expressão Gênica de Plantas , Loci Gênicos , Gossypium/genética , Proteínas de Plantas/genética , RNA de Plantas/metabolismo , Transativadores/genética , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Transativadores/metabolismo
11.
J Exp Bot ; 71(12): 3499-3511, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32149350

RESUMO

In planta, a vital regulatory complex, MYB-basic helix-loop-helix (bHLH)-WD40 (MBW), is involved in trichome development and synthesis of anthocyanin and proanthocyanin in Arabidopsis. Usually, WD40 proteins provide a scaffold for protein-protein interaction between MYB and bHLH proteins. Members of subgroup 9 of the R2R3 MYB transcription factors, which includes MYBMIXTA-Like (MML) genes important for plant cell differentiation, are unable to interact with bHLH. In this study, we report that a cotton (Gossypium hirsutum) seed trichome or lint fiber-related GhMML factor, GhMML4_D12, interacts with a diverged WD40 protein (GhWDR) in a process similar to but different from that of the MBW ternary complex involved in Arabidopsis trichome development. Amino acids 250-267 of GhMML4_D12 and the first and third WD40 repeat domains of GhWDR determine their interaction. GhWDR could rescue Arabidopsis ttg1 to its wild type, confirming its orthologous function in trichome development. Our findings shed more light towards understanding the key role of the MML and WD40 families in plants and in the improvement of cotton fiber production.


Assuntos
Proteínas de Arabidopsis , Fatores de Transcrição , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Repetições WD40
12.
Plant Cell ; 29(8): 2027-2046, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28747422

RESUMO

Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated GhSCP2D, a putative sterol carrier protein gene from elongating cotton (Gossypium hirsutum) fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed GhSCP2D expression had reduced sterol contents and closed PDs at 5 through 25 DPA The GhSCP2D-suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of GhPdBG3-2A/D, which encodes a PD-targeting ß-1,3-glucanase. Both GhPdBG3-2A/D expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing GhSCP2D upregulated a cohort of SUT and SWEET sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for GhPdBG3-2A/D expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating GhSCP2D activates or increases the expression of SUTs and SWEETs, leading to the switch from symplasmic to apoplasmic pathways.


Assuntos
Proteínas de Transporte/genética , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Plasmodesmos/metabolismo , Proteínas de Transporte/metabolismo , Regulação para Baixo/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Gossypium/ultraestrutura , Hexoses/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Família Multigênica , Permeabilidade , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Plasmodesmos/ultraestrutura , Plântula/metabolismo , Homologia de Sequência de Aminoácidos , Esteróis/biossíntese , Esteróis/metabolismo , Sacarose/metabolismo , Supressão Genética
13.
BMC Genomics ; 19(1): 162, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471803

RESUMO

BACKGROUND: Polyploidy is considered a major driving force in genome expansion, yielding duplicated genes whose expression may be conserved or divergence as a consequence of polyploidization. RESULTS: We compared the genome sequences of tetraploid cotton (Gossypium hirsutum) and its two diploid progenitors, G. arboreum and G. raimondii, and found that the bHLH genes were conserved over the polyploidization. Oppositely, the expression of the homeolgous gene pairs was diversified. The biased homeologous proportion for bHLH family is significantly higher (64.6%) than the genome wide homeologous expression bias (40%). Compared with cacao (T. cacao), orthologous genes only accounted for a small proportion (41.7%) of whole cotton bHLHs family. The further Ks analysis indicated that bHLH genes underwent at least two distinct episodes of whole genome duplication: a recent duplication (1.0-60.0 million years ago, MYA, 0.005 < Ks < 0.312) and an old duplication (> 60.0 MYA, 0.312 < Ks < 3.0). The old duplication event might have played a key role in the expansion of the bHLH family. Both recent and old duplicated pairs (68.8%) showed a divergent expression profile, indicating specialized functions. The expression diversification of the duplicated genes suggested it might be a universal feature of the long-term evolution of cotton. CONCLUSIONS: Overview of cotton bHLH proteins indicated a conserved and divergent evolution from diploids to allotetraploid. Our results provided an excellent example for studying the long-term evolution of polyploidy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Diploide , Poliploidia , Tetraploidia
14.
New Phytol ; 217(2): 883-895, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29034968

RESUMO

Cotton, with cellulose-enriched mature fibers, is the largest source of natural textiles. Through a map-based cloning strategy, we isolated an industrially important lint fiber development gene (Li3 ) that encodes an MYB-MIXTA-like transcription factor (MML) on chromosome D12 (GhMML4_D12). Virus-induced gene silencing or decreasing the expression of the GhMML4_D12 gene in n2 NSM plants resulted in a significant reduction in epidermal cell prominence and lint fiber production. GhMML4_D12 is arranged in tandem with GhMML3, another MIXTA gene responsible for fuzz fiber development. These two very closely related MIXTA genes direct fiber initiation production in two specialized cell forms: lint and fuzz fibers. They may control the same metabolic pathways in different cell types. The MIXTAs expanded in Malvaceae during their evolution and produced a Malvaceae-specific family that regulates epidermal cell differentiation, different from the gene family that regulates leaf hair trichome development. Cotton has developed a unique transcriptional regulatory network for fiber development. Characterization of target genes regulating fiber production has provided insights into the molecular mechanisms underlying cotton fiber development and has allowed the use of genetic engineering to increase lint yield by inducing more epidermal cells to develop into lint rather than fuzz fibers.


Assuntos
Fibra de Algodão , Evolução Molecular , Genes de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Diferenciação Celular , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gossypium/ultraestrutura , Fenótipo , Filogenia , Mapeamento Físico do Cromossomo , Epiderme Vegetal/citologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
PLoS Genet ; 11(12): e1005724, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26710171

RESUMO

DNA methylation is essential for plant and animal development. In plants, methylation occurs at CG, CHG, and CHH (H = A, C or T) sites via distinct pathways. Cotton is an allotetraploid consisting of two progenitor genomes. Each cotton fiber is a rapidly-elongating cell derived from the ovule epidermis, but the molecular basis for this developmental transition is unknown. Here we analyzed methylome, transcriptome, and small RNAome and revealed distinct changes in CHH methylation during ovule and fiber development. In ovules, CHH hypermethylation in promoters correlated positively with siRNAs, inducing RNA-dependent DNA methylation (RdDM), and up-regulation of ovule-preferred genes. In fibers, the ovule-derived cells generated additional heterochromatic CHH hypermethylation independent of RdDM, which repressed transposable elements (TEs) and nearby genes including fiber-related genes. Furthermore, CHG and CHH methylation in genic regions contributed to homoeolog expression bias in ovules and fibers. Inhibiting DNA methylation using 5-aza-2'-deoxycytidine in cultured ovules has reduced fiber cell number and length, suggesting a potential role for DNA methylation in fiber development. Thus, RdDM-dependent methylation in promoters and RdDM-independent methylation in TEs and nearby genes could act as a double-lock feedback mechanism to mediate gene and TE expression, potentiating the transition from epidermal to fiber cells during ovule and seed development.


Assuntos
Metilação de DNA , Gossypium/genética , MicroRNAs/genética , Óvulo Vegetal/genética , Feixe Vascular de Plantas/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/crescimento & desenvolvimento , Óvulo Vegetal/crescimento & desenvolvimento , Feixe Vascular de Plantas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Tetraploidia
16.
New Phytol ; 210(4): 1298-310, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26832840

RESUMO

Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , RNA Antissenso/genética , Gossypium/crescimento & desenvolvimento , Gossypium/ultraestrutura , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Clivagem do RNA , RNA de Plantas/genética , RNA Interferente Pequeno , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Análise de Sequência de RNA
17.
BMC Genomics ; 16: 477, 2015 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-26116072

RESUMO

BACKGROUND: The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. RESULTS: Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. CONCLUSIONS: The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.


Assuntos
Parede Celular/genética , Gossypium/genética , Metaboloma/genética , Transcriptoma/genética , Metabolismo dos Carboidratos/genética , Fibra de Algodão/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glucosiltransferases/genética , Metabolômica/métodos
18.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475487

RESUMO

TCP transcription factors play a key role in regulating various developmental processes, particularly in shoot branching, flower development, and leaf development, and these factors are exclusively found in plants. However, comprehensive studies investigating TCP transcription factors in pepper (Capsicum annuum L.) are lacking. In this study, we identified 27 CaTCP members in the pepper genome, which were classified into Class I and Class II through phylogenetic analysis. The motif analysis revealed that CaTCPs in the same class exhibit similar numbers and distributions of motifs. We predicted that 37 previously reported miRNAs target 19 CaTCPs. The expression levels of CaTCPs varied in various tissues and growth stages. Specifically, CaTCP16, a member of Class II (CIN), exhibited significantly high expression in flowers. Class I CaTCPs exhibited high expression levels in leaves, while Class II CaTCPs showed high expression in lateral branches, especially in the CYC/TB1 subclass. The expression profile suggests that CaTCPs play specific roles in the developmental processes of pepper. We provide a theoretical basis that will assist in further functional validation of the CaTCPs.

19.
J Adv Res ; 56: 15-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36966917

RESUMO

INTRODUCTION: Allotetraploid upland cotton (Gossypium hirsutum L.) is native to the Mesoamerican and Caribbean regions, had been improved in the southern United States by the mid-eighteenth century, was then dispersed worldwide. However, a Hainan Island Native Cotton (HIC) has long been grown extensively on Hainan Island, China. OBJECTIVES: Explore HIC's evolutionary relationship and genomic diversity with other tetraploid cottons, its origin and whether it was used for YAZHOUBU (Yazhou cloth, World Intangible Cultural Heritage) weaving, and the role of structural variations (SVs) in upland cotton domestication. METHODS: We assembled a high-quality genome of one HIC plant. We performed phylogenetic analysis, divergence time estimation, principal component analysis and population differentiation estimation using cotton assemblies and/or resequencing data. SVs were detected by whole-genome comparison. A F2 population was used for linkage analysis and to study effects of SVs. Buoyancy and salt water tolerance tests for seeds were conducted. RESULTS: We found that the HIC belongs to G. purpurascens. G. purpurascens is best classified as a primitive race of G. hirsutum. The potential for long range transoceanic dispersal of G. purpurascens seeds was proved. A set of SVs, selective sweep regions between G. hirsutum races and cultivars, and quantitative trait loci (QTLs) of eleven agronomic traits were obtained. SVs, especially large-scale SVs, were found to have important effects on cotton domestication and improvement. Of them, eight large-scale inversions strongly associated with yield and fiber quality have probably undergone artificial selection in domestication. CONCLUSION: G. purpurascens including HIC is a primitive race of G. hirsutum, probably disperse to Hainan from Central America by floating on ocean currents, may have been partly domesticated, planted and was likely used for YAZHOUBU weaving in Hainan much earlier than the Pre-Columbian period. SV plays an important role in cotton domestication and improvement.


Assuntos
Domesticação , Gossypium , Gossypium/genética , Filogenia , Genoma de Planta/genética , Locos de Características Quantitativas
20.
Plant Commun ; 5(5): 100832, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38321741

RESUMO

Members of the Malvaceae family, including Corchorus spp., Gossypium spp., Bombax spp., and Ceiba spp., are important sources of natural fibers. In the past decade, the genomes of several Malvaceae species have been assembled; however, the evolutionary history of Malvaceae species and the differences in their fiber development remain to be clarified. Here, we report the genome assembly and annotation of two natural fiber plants from the Malvaceae, Bombax ceiba and Ceiba pentandra, whose assembled genome sizes are 783.56 Mb and 1575.47 Mb, respectively. Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number (2n = 14 to 2n = 96) and genome size (234 Mb to 2676 Mb) among Malvaceae species. We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromosomes, providing new insights into the evolutionary trajectories of Malvaceae species. MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions in fiber cell-fate determination in the epidermis. It appears to perform this function in any tissue where it is expressed, i.e. in fibers on the endocarp of B. ceiba and in ovule fibers of cotton. We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of the finer, less spinnable, weaker fibers of B. ceiba. Our study provides two high-quality genomes of natural fiber plants and offers insights into the evolution of Malvaceae species and differences in their natural fiber formation and development through multi-omics analysis.


Assuntos
Genoma de Planta , Filogenia , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA