Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000227

RESUMO

The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.


Assuntos
Envelhecimento , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiologia , Envelhecimento/fisiologia , Feminino , Caracteres Sexuais , Masculino , Animais , Cognição/fisiologia , Fatores Sexuais
2.
Anal Chem ; 95(14): 6009-6019, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005435

RESUMO

Fine particulates (FPs) are a major class of airborne pollutants. In mammals, FPs may reach the alveoli through the respiratory system, cross the air-blood barrier, spread into other organs, and induce hazardous effects. Although birds have much higher respiratory risks to FPs than mammals, the biological fate of inhaled FPs in birds has rarely been explored. Herein, we attempted to disclose the key properties that dictate the lung penetration of nanoparticles (NPs) by visualizing a library of 27 fluorescent nanoparticles (FNPs) in chicken embryos. The FNP library was prepared by combinational chemistry to tune their compositions, morphologies, sizes, and surface charges. These NPs were injected into the lungs of chicken embryos for dynamic imaging of their distributions by IVIS Spectrum. FNPs with diameters <16 nm could cross the air-blood barrier in 20 min, spread into the blood, and accumulate in the yolk sac. In contrast, large FNPs (>30 nm) were mainly retained in the lungs and rarely detected in other tissues/organs. In addition to size, surface charge was the secondary determinant for NPs to cross the air-blood barrier. Compared to cationic and anionic particles, neutrally charged FNPs showed the fastest lung penetration. A predictive model was therefore developed to rank the lung penetration capability of FNPs by in silico analysis. The in silico predictions could be well validated in chicks by oropharyngeal exposure to six FNPs. Overall, our study discovered the key properties of NPs that are responsible for their lung penetration and established a predictive model that will greatly facilitate respiratory risk assessments of nanoproducts.


Assuntos
Galinhas , Nanopartículas , Embrião de Galinha , Animais , Barreira Alveolocapilar , Nanopartículas/química , Pulmão , Corantes , Tamanho da Partícula , Mamíferos
3.
Sensors (Basel) ; 23(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896711

RESUMO

A monoblock light-scattering sensor, which is capable of measuring the fat content of milk and indicating the excess by which the somatic cell count (SCC) is over the permissible level, has been developed for installation in dairy systems. In order for the sensor to perform measurements when the milking machine is working in the "milk plug" mode, a flow-through unit is designed in the form of a pipe with a lateral cylindrical branch, in which milk accumulates so as to eliminate large bubbles and achieve continuity of the milk flow. The operation of the sensor is based on the registration of the angular intensity distribution of light scattered in the transparent cylindrical segment of the tube branch. A semiconductor laser with a wavelength of 650 nm is used as a light source for determining scattering in milk. The angular distribution of the scattered light intensity (scattering indicatrix) is recorded using an axial photodiode array. The fat content is determined by the average slope of the measured scattering indicatrix in the range of scattering angles 72-162°. The SCC level is estimated from the relative deviation of the forward scatter intensity normalized to the backscatter intensity with respect to uninfected milk. The sensor has been tested on a Yolochka-type milking machine.


Assuntos
Indústria de Laticínios , Leite , Feminino , Animais , Indústria de Laticínios/métodos , Contagem de Células , Registros , Lactação
4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768736

RESUMO

Despite the fact that sorafenib is recommended for the treatment of oncological diseases of the liver, kidneys, and thyroid gland, and recently it has been used for combination therapy of brain cancer of various genesis, there are still significant problems for its widespread and effective use. Among these problems, the presence of the blood-brain barrier of the brain and the need to use high doses of sorafenib, the existence of mechanisms for the redistribution of sorafenib and its release in the brain tissue, as well as the high resistance of gliomas and glioblastomas to therapy should be considered the main ones. Therefore, there is a need to create new methods for delivering sorafenib to brain tumors, enhancing the therapeutic potential of sorafenib and reducing the cytotoxic effects of active compounds on the healthy environment of tumors, and ideally, increasing the survival of healthy cells during therapy. Using vitality tests, fluorescence microscopy, and molecular biology methods, we showed that the selenium-sorafenib (SeSo) nanocomplex, at relatively low concentrations, is able to bypass the mechanisms of glioblastoma cell chemoresistance and to induce apoptosis through Ca2+-dependent induction of endoplasmic reticulum stress, changes in the expression of selenoproteins and selenium-containing proteins, as well as key kinases-regulators of oncogenicity and cell death. Selenium nanoparticles (SeNPs) also have a high anticancer efficacy in glioblastomas, but are less selective, since SeSo in cortical astrocytes causes a more pronounced activation of the cytoprotective pathways.


Assuntos
Antineoplásicos , Glioblastoma , Selênio , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Glioblastoma/metabolismo , Selênio/uso terapêutico , Astrócitos/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Apoptose
5.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569591

RESUMO

The cytoprotective properties of the trace element selenium, its nanoparticles, and selenium nanocomplexes with active compounds are shown using a number of models. To date, some molecular mechanisms of the protective effect of spherical selenium nanoparticles under the action of ischemia/reoxygenation on brain cells have been studied. Among other things, the dependence of the effectiveness of the neuroprotective properties of nanoselenium on its diameter, pathways, and efficiency of penetration into astrocytes was established. In general, most research in the field of nanomedicine is focused on the preparation and study of spherical nanoparticles of various origins due to the ease of their preparation; in addition, spherical nanoparticles have a large specific surface area. However, obtaining and studying the mechanisms of action of nanoparticles of a new form are of great interest since nanorods, having all the positive properties of spherical nanoparticles, will also have a number of advantages. Using the laser ablation method, we managed to obtain and characterize selenium nanorods (SeNrs) with a length of 1 µm and a diameter of 100 nm. Using fluorescence microscopy and inhibitory analysis, we were able to show that selenium nanorods cause the generation of Ca2+ signals in cortical astrocytes in an acute experiment through the mobilization of Ca2+ ions from the thapsigargin-sensitive pool of the endoplasmic reticulum. Chronic use of SeNrs leads to a change in the expression pattern of genes encoding proteins that regulate cell fate and protect astrocytes from ischemia-like conditions and reoxygenation through the inhibition of a global increase in the concentration of cytosolic calcium ([Ca2+]i). An important component of the cytoprotective effect of SeNrs during ischemia/reoxygenation is the induction of reactive A2-type astrogliosis in astrocytes, leading to an increase in both baseline and ischemia/reoxygenation-induced phosphoinositide 3-kinase (PI3K) activity and suppression of necrosis and apoptosis. The key components of this cytoprotective action of SeNrs are the actin-dependent process of endocytosis of nanoparticles into cells and activation of the Ca2+ signaling system of astrocytes.


Assuntos
Nanotubos , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Projetos Piloto , Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isquemia/metabolismo , Células Cultivadas
6.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762608

RESUMO

Most of the works aimed at studying the cytoprotective properties of nanocerium are usually focused on the mechanisms of regulation of the redox status in cells while the complex effects of nanocerium on calcium homeostasis, the expression of pro-apoptotic and protective proteins are generally overlooked. There is a problem of a strong dependence of the effects of cerium oxide nanoparticles on their size, method of preparation and origin, which significantly limits their use in medicine. In this study, using the methods of molecular biology, immunocytochemistry, fluorescence microscopy and inhibitory analysis, the cytoprotective effect of cerium oxide nanoparticles obtained by laser ablation on cultured astrocytes of the cerebral cortex under oxygen-glucose deprivation (OGD) and reoxygenation (ischemia-like conditions) are shown. The concentration effects of cerium oxide nanoparticles on ROS production by astrocytes in an acute experiment and the effects of cell pre-incubation with nanocerium on ROS production under OGD conditions were studied. The dose dependence for nanocerium protection of cortical astrocytes from a global increase in calcium ions during oxygen-glucose deprivation and cell death were demonstrated. The concentration range of cerium oxide nanoparticles at which they have a pro-oxidant effect on cells has been identified. The effect of nanocerium concentrations on astrocyte preconditioning, accompanied by increased expression of protective proteins and limited ROS production induced by oxygen-glucose deprivation, has been investigated. In particular, a correlation was found between an increase in the concentration of cytosolic calcium under the action of nanocerium and the suppression of cell death. As a result, the positive and negative effects of nanocerium under oxygen-glucose deprivation and reoxygenation in astrocytes were revealed at the molecular level. Nanocerium was found to act as a "double-edged sword" and to have a strictly defined concentration therapeutic "window".

7.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894773

RESUMO

This review is devoted to a topic of high interest in recent times-the use of plasma technologies in agriculture. The increased attention to these studies is primarily due to the demand for the intensification of food production and, at the same time, the request to reduce the use of pesticides. We analyzed publications, focusing on research conducted in the last 3 years, to identify the main achievements of plasma agrotechnologies and key obstacles to their widespread implementation in practice. We considered the main types of plasma sources used in this area, their advantages and limitations, which determine the areas of application. We also considered the use of plasma-activated liquids and the efficiency of their production by various types of plasma sources.


Assuntos
Praguicidas , Gases em Plasma , Agricultura , Alérgenos , Sementes
8.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614309

RESUMO

Foodborne infections are an important global health problem due to their high prevalence and potential for severe complications. Bacterial contamination of meat during processing at the enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties can be applied to prevent bacterial contamination. A composite coating based on fluoroplast and Ag2O NPs can serve as such a coating. In present study, we, for the first time, created a composite coating based on fluoroplast and Ag2O NPs. Using laser ablation in water, we obtained spherical Ag2O NPs with an average size of 45 nm and a ζ-potential of -32 mV. The resulting Ag2O NPs at concentrations of 0.001-0.1% were transferred into acetone and mixed with a fluoroplast-based varnish. The developed coating made it possible to completely eliminate damage to a Teflon cutting board. The fluoroplast/Ag2O NP coating was free of defects and inhomogeneities at the nano level. The fluoroplast/Ag2O NP composite increased the production of ROS (H2O2, OH radical), 8-oxogualnine in DNA in vitro, and long-lived active forms of proteins. The effect depended on the mass fraction of the added Ag2O NPs. The 0.01-0.1% fluoroplast/NP Ag2O coating exhibited excellent bacteriostatic and bactericidal properties against both Gram-positive and Gram-negative bacteria but did not affect the viability of eukaryotic cells. The developed PTFE/NP Ag2O 0.01-0.1% coating can be used to protect cutting boards from bacterial contamination in the meat processing industry.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Politetrafluoretileno , Peróxido de Hidrogênio , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Carne
9.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202662

RESUMO

Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with nanoparticles was also studied. It was shown that changing pH may be the easiest way to control the protein corona on gold nanoparticles. In a colloid of nanoparticles, both in the presence and absence of protein, aggregation-deaggregation, and in a protein colloid, monomerization-dimerization-aggregation are the main processes when pH is changed. A specific point at pH 7.5, where a transition of the colloidal system from one state to another is observed, has been found using all the optical methods mentioned. It has been shown that gold nanoparticles can stabilize HEWL protein molecules at alkaline pH while maintaining enzymatic activity, which can be used in practice. The data obtained in this manuscript allow for the state of HEWL colloids and gold nanoparticles to be monitored using one or two simple and accessible optical methods.


Assuntos
Nanopartículas Metálicas , Muramidase , Ouro , Coloides , Concentração de Íons de Hidrogênio
10.
Environ Geochem Health ; 45(12): 8967-8987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37138143

RESUMO

Soil plays a key role in ecosphere and air quality regulation. Obsolete environmental technologies lead to soil quality loss, air, water, and land systems pollution. Pedosphere and plants are intertwined with the air quality. Ionized O2 is capable to intensify atmosphere turbulence, providing particulate matter (PM2.5) coalescence and dry deposition. Addressing environmental quality, a Biogeosystem Technique (BGT*) heuristic transcendental (nonstandard and not direct imitation of nature) methodology has been developed. A BGT* main focus is an enrichment of Earth's biogeochemical cycles through land use and air cleaning. An intra-soil processing, which provides the soil multilevel architecture, is one of the BGT* ingredients. A next BGT* implementation is intra-soil pulse continuously discrete watering for optimal soil water regime and freshwater saving up to 10-20 times. The BGT* comprises intra-soil dispersed environmentally safe recycling of the PM sediments, heavy metals (HMs) and other pollutants, controlling biofilm-mediated microbial community interactions in the soil. This provides abundant biogeochemical cycle formation and better functioning of the humic substances, biological preparation, and microbial biofilms as a soil-biological starter, ensuring priority plants and trees nutrition, growth and resistance to phytopathogens. A higher underground and aboveground soil biological product increases a reversible C biological sequestration from the atmosphere. An additional light O2 ions photosynthetic production ensures a PM2.5 and PM0.1 coalescence and strengthens an intra-soil transformation of PM sediments into nutrients and improves atmosphere quality. The BGT* provides PM and HMs intra-soil passivation, increases soil biological productivity, stabilizes a climate system of the earth and promotes a green circular economy.


Assuntos
Poluição do Ar , Metais Pesados , Solo , Poluição do Ar/análise , Metais Pesados/análise , Material Particulado/análise , Plantas , Água
11.
Sensors (Basel) ; 22(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36366006

RESUMO

Electric impedance spectroscopy is an alternative technology to existing methods that shows promising results in the agro-food industry and plant physiology research. For example, this technology makes it possible to monitor the condition of plants, even in the early stages of development, and to control the quality of finished products. However, the use of electric impedance spectroscopy is often associated with the need to organize special laboratory conditions for measurements. Our aim is to extract information about the state of health of the internal tissues of a plant's branches from impedance measurements. Therefore, we propose a new technique using the device and model developed by us that makes it possible to monitor the condition of tree branch tissues in situ. An apple tree was chosen as the object under study, and the dependence of the impedance of the apple tree branch on the signal frequency and branch length was analyzed. The change in the impedance of an apple tree branch during drying was also analyzed. It was shown that, when a branch dries out, the conductivity of the xylem mainly decreases. The developed technique was also applied to determine the development of the vascular system of an apple tree after grafting. It was shown that the processing of the scion and rootstock sections with the help of cold atmospheric plasma and a plasma-treated solution contributes to a better formation of graft unions.


Assuntos
Malus , Árvores , Raízes de Plantas , Espectroscopia Dielétrica , Malus/fisiologia , Impedância Elétrica
12.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362436

RESUMO

This study aimed to discover the immunomodulatory effect of selenium nanoparticles (SeNPs) on the functional state of neutrophils in vivo. Intraperitoneal injections of SeNPs (size 100 nm) 2.5 mg/kg/daily to BALB/c mice for a duration of 7-28 days led to the development of an inflammatory reaction, which was registered by a significant increase in the number of neutrophils released from the peritoneal cavity, as well as their activated state, without additional effects. At the same time, subcutaneous injections of the same SeNPs preparations at concentrations of 0.1, 0.5, and 2.5 mg/kg, on the contrary, modulated the functional state of neutrophils depending on the concentration and duration of SeNPs administration. With the use of fluorescence spectroscopy, chemiluminescence, biochemical methods, and PCR analysis, it was found that subcutaneous administration of SeNPs (0.1, 0.5, and 2.5 mg/kg) to mice for a short period of time (7-14 days) leads to modification of important neutrophil functions (adhesion, the number of migrating cells into the peritoneal cell cavity, ROS production, and NET formation). The obtained results indicated the immunostimulatory and antioxidant effects of SeNPs in vivo during short-term administration, while the most pronounced immunomodulatory effects of SeNPs were observed with the introduction of a low concentration of SeNPs (0.1 mg/kg). Increase in the administration time of SeNPs (0.1 mg/kg or 2.5 mg/kg) up to 28 days led to a decrease in the adhesive abilities of neutrophils and suppression of the expression of mRNA of adhesive molecules, as well as proteins involved in the generation of ROS, with the exception of NOX2; there was a tendency to suppress gene expression pro-inflammatory factors, which indicates the possible manifestation of immunosuppressive and anti-inflammatory effects of SeNPs during their long-term administration. Changes in the expression of selenoproteins also had features depending on the concentration and duration of the administered SeNPs. Selenoprotein P, selenoprotein M, selenoprotein S, selenoprotein K, and selenoprotein T were the most sensitive to the introduction of SeNPs into the mouse organism, which indicates their participation in maintaining the functional status of neutrophils, and possibly mediated the immunomodulatory effect of SeNPs.


Assuntos
Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , Selênio/química , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Camundongos Endogâmicos BALB C
13.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806466

RESUMO

It is known that selenium nanoparticles (SeNPs) obtained on their basis have a pleiotropic effect, inducing the process of apoptosis in tumor cells, on the one hand, and protecting healthy tissue cells from death under stress, on the other hand. It has been established that SeNPs protect brain cells from ischemia/reoxygenation through activation of the Ca2+ signaling system of astrocytes and reactive astrogliosis. At the same time, for a number of particles, the limitations of their use, associated with their size, are shown. The use of nanoparticles with a diameter of less than 10 nm leads to their short life-time in the bloodstream and rapid removal by the liver. Nanoparticles larger than 200 nm activate the complement system and are also quickly removed from the blood. The effects of different-sized SeNPs on brain cells have hardly been studied. Using the laser ablation method, we obtained SeNPs of various diameters: 50 nm, 100 nm, and 400 nm. Using fluorescence microscopy, vitality tests, PCR analysis, and immunocytochemistry, it was shown that all three types of the different-sized SeNPs have a cytoprotective effect on brain cortex cells under conditions of oxygen-glucose deprivation (OGD) and reoxygenation (R), suppressing the processes of necrotic death and inhibiting different efficiency processes of apoptosis. All of the studied SeNPs activate the Ca2+ signaling system of astrocytes, while simultaneously inducing different types of Ca2+ signals. SeNPs sized at 50 nm- induce Ca2+ responses of astrocytes in the form of a gradual irreversible increase in the concentration of cytosolic Ca2+ ([Ca2+]i), 100 nm-sized SeNPs induce stable Ca2+ oscillations without increasing the base level of [Ca2+]i, and 400 nm-sized SeNPs cause mixed patterns of Ca2+ signals. Such differences in the level of astrocyte Ca2+ signaling can explain the different cytoprotective efficacy of SeNPs, which is expressed in the expression of protective proteins and the activation of reactive astrogliosis. In terms of the cytoprotective efficiency under OGD/R conditions, different-sized SeNPs can be arranged in descending order: 100 nm-sized > 400 nm-sized > 50 nm-sized.


Assuntos
Nanopartículas , Selênio , Encéfalo , Gliose , Glucose , Humanos , Oxigênio , Selênio/farmacologia
14.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743086

RESUMO

Despite the use of sorafenib as one of the most effective drugs for the treatment of liver cancer, its significant limitations remain-poor solubility, the need to use high doses with the ensuing complications on healthy tissues and organs, and the formation of cell resistance to the drug. At the same time, there is more and more convincing evidence of the anticancer effect of selenium-containing compounds and nanoparticles. The aim of this work was to develop a selenium-sorafenib nanocomplex and study the molecular mechanisms of its anticancer effect on human hepatocyte carcinoma cells, where nanoselenium is not only a sorafenib transporter, but also an active compound. We have created a selenium-sorafenib nanocomplex based on selenium nanoparticles with size 100 nm. Using vitality tests, fluorescence microscopy, and PCR analysis, it was possible to show that selenium nanoparticles, both by themselves and doped with sorafenib, have a pronounced pro-apoptotic effect on HepG2 cells with an efficiency many times greater than that of sorafenib (So). "Naked" selenium nanoparticles (SeNPs) and the selenium-sorafenib nanocomplex (SeSo), already after 24 h of exposure, lead to the induction of the early stages of apoptosis with the transition to the later stages with an increase in the incubation time up to 48 h. At the same time, sorafenib, at the studied concentrations, began to exert a proapoptotic effect only after 48 h. Under the action of SeNPs and SeSo, both classical pathways of apoptosis induction and ER-stress-dependent pathways involving Ca2+ ions are activated. Thus, sorafenib did not cause the generation of Ca2+ signals by HepG2 cells, while SeNPs and SeSo led to the activation of the Ca2+ signaling system of cells. At the same time, the selenium-sorafenib nanocomplex turned out to be more effective in activating the Ca2+ signaling system of cells, inducing apoptosis and ER stress by an average of 20-25% compared to "naked" selenium nanoparticles. Our data on the mechanisms of action and the created nanocomplex are promising as a platform for the creation of highly selective and effective drugs with targeted delivery to tumors.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Nanopartículas , Selênio , Antineoplásicos/farmacologia , Apoptose , Células Hep G2 , Humanos , Selênio/farmacologia , Sorafenibe/farmacologia
15.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235285

RESUMO

The influence of laser radiation of a typical surgical laser on the physicochemical properties of the Bovine Serum Albumin (BSA) protein was studied. It was established that the physicochemical characteristics of optical breakdown weakly depend on the concentration of protein molecules. At the same time, the patterns observed for an aqueous solution of BSA irradiated with a laser for different time periods were extremely similar to the classical ones. It was established that after exposure to laser radiation, the optical density of protein solutions increases. At the same time, the intensity of BSA fluorescence due to aromatic amino acid residues decreases insignificantly after exposure to laser radiation. In this case, the position of the excitation and emission maximum does not change, and the shape of the fluorescence spot on 3D maps also does not change significantly. On the Raman spectrum after exposure to laser radiation, a significant decrease in 1570 cm-1 was observed, which indicates the degradation of α-helices and, as a result, partial denaturation of BSA molecules. Partial denaturation did not significantly change the total area of protein molecules, since the refractive index of solutions did not change significantly. However, in BSA solutions, after exposure to laser radiation, the viscosity increased, and the pseudoplasticity of aqueous solutions decreased. In this case, there was no massive damage to the polypeptide chain; on the contrary, when exposed to optical breakdown, intense aggregation was observed, while aggregates with a size of 400 nm or more appeared in the solution. Thus, under the action of optical breakdown induced by laser radiation in a BSA solution, the processes of partial denaturation and aggregation prevail, aromatic amino acid residues are damaged to a lesser extent, and fragmentation of protein molecules is not observed.


Assuntos
Soroalbumina Bovina , Água , Aminoácidos Aromáticos , Lasers , Luz , Soroalbumina Bovina/química , Soluções , Água/química
16.
Arch Biochem Biophys ; 697: 108671, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33181129

RESUMO

PURPOSE: Peroxiredoxin 1 (Prx1) is known to be a multifunctional antioxidant enzyme playing an essential role in protecting the organism against oxidative stress. We hypothesized that administration of exogenous recombinant Prx1 may provide additional protection of the mammalian organism during the development of acute oxidative stress induced by ionizing radiation. Hence, the aim of the present work was to study the radioprotective properties of exogenous Prx1. MATERIALS AND METHODS: Recombinant Prx1 was obtained by genetic engineering. The properties of Prx1 were studied using physicochemical methods. An immunoblotting and ELISA were used for the determination of the level of endogenous and exogenous Prx1 in animal blood. The survival rate of irradiated animals was assessed for 30 days with various modes of administration (intraperitoneal, intramuscular, intravenously) Prx1. Using a hematological analyzer and microscopic analysis, the changes in the level of leukocytes and platelets were assessed in animals that received and did not receive an intravenous injection of Prx1 before irradiation. Genoprotective properties of Prx1 were confirmed by micronucleus test. Real-time PCR was used to investigate the effect of Prx1 on the expression of genes involved in response to oxidative stress. RESULTS: Recombinant Prx1 was shown to significantly reduce oxidative damage to biological macromolecules. Prx1 is an effective radioprotector which decreases the severity of radiation-induced leuko- and thrombocytopenia, plus protects bone marrow cells from damage. The half-life of Prx1 in the bloodstream is more than 1 h, while within 1 h there is a loss of the antioxidant activity of Prx1 by almost 50%, which limits its use long (2 h) before irradiation. The introduction of Prx1 after irradiation has no significant radiomitigating effect. The most effective way of using Prx1 is intravenous administration shortly (15-30 min) before exposure to ionizing radiation, with a dose reduction factor of 1.3. Under the action of ionizing radiation a dose-dependent appearance of endogenous Prx1 in the bloodstream was also observed. The appearance of Prx1 in the bloodstream alters the expression of stress response genes (especial antioxidant response and DNA repair) in the cells of red bone marrow, promoting the activation of repair processes. CONCLUSION: The recombinant Prx1 can be considered as an effective radioprotector for minimizing the risks of injury of animal's body by ionizing radiation.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Peroxirredoxinas/farmacologia , Protetores contra Radiação/farmacologia , Irradiação Corporal Total/efeitos adversos , Animais , Relação Dose-Resposta à Radiação , Hematologia , Masculino , Camundongos , Análise de Sobrevida
17.
Arch Biochem Biophys ; 702: 108830, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33727039

RESUMO

Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.


Assuntos
NF-kappa B/metabolismo , Peroxirredoxina VI/farmacologia , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Camundongos , Modelos Moleculares , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Peroxirredoxina VI/química , Peroxirredoxina VI/metabolismo , Conformação Proteica , Protetores contra Radiação/química , Protetores contra Radiação/metabolismo , Transdução de Sinais/efeitos da radiação , Receptor 4 Toll-Like/química
18.
Environ Res ; 194: 110605, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33316230

RESUMO

The Kastanozem complex in the dry steppe of southern Russia underlies an artificially-constructed forest strips. Deep ploughing to a depth of 45 cm was used to process the soil prior to planting. Between 20 and 40 cm depth, soil density was high, 1.57 t m-3. Soil hardness was also high, 440 psi. Soil aggregates greater than 5 cm in size were impermeable to tree roots. The content of such aggregates was high, comprising 35%. The number of tree roots with diameters greater than 0.5 cm that cross the soil profile was as low as 0.15 to 0.3 pcs cm-2. The soil matric potential signifying water availability was low in the vegetation period -0.9 MPa to a depth of 1.0 m. According to modelling experiments, the main salt components in the soil solution drive the transfer of soil organic matter (SOM) and heavy metals (HM). The composition of the soil solution determined by the calcium carbonate equilibrium (CCE) and the association and complexation of ions. ION-3 software was used to calculate the ion equilibrium in the soil solution. Macro-ions Cа2+, Mg2+, SO42-, and CO32- partly bonded as ion pairs. Oversaturation of the soil solution with CaCO3 was calculated according to the analytical content of macro-ion, which was high up to 1000 units, and its value decreased in response to ionic strength, activity, association, complexation, and thermodynamic equilibrium of macro-ions in the soil solution. Oversaturation calculated for Salic Solonetz and Gleyic Solonetz soil solutions was small considering the SOM content. Calculations indicate the profile and lateral loss of C from the soil to the vadose zone. The content of Pb in the soil solution was calculated sirca 75%-80%. The calculated coefficient of Pb2+ association was as high as 52.0. The probability of Pb passivation by SOM in the Kastanozem complex was significant. The probability of uncontrolled transfer and accumulation of HM in the soil and vadose zone was high. Biogeosystem Technique (BGT*) transcendental methodology, an innovative methodology created for stable geomorphological system formation to achieve sustainable agriculture and silviculture, was applied. The BGT* elements were: intra-soil milling of the 30-60 cm soil layer for geophysical conditioning; intra-soil continuously-discrete pulse watering for plants and trees to improve the hydrologic regime. The BGT* methodology reduced HM mobility, controlled biodegradation, enriched nutrient biogeochemical cycling, increased C content, increased soil productivity, and reversible carbon sequester in biological form.


Assuntos
Florestas , Solo , Carbono/análise , Modelos Teóricos , Federação Russa , Termodinâmica
19.
Biochemistry (Mosc) ; 86(10): 1256-1274, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903155

RESUMO

The review presents current concepts of the molecular mechanisms of oxidative stress development and describes main stages of the free-radical reactions in oxidative stress. Endogenous and exogenous factors of the oxidative stress development, including dysfunction of cell oxidoreductase systems, as well as the effects of various external physicochemical factors, are discussed. The review also describes the main components of the antioxidant defense system and stages of its evolution, with a special focus on peroxiredoxins, glutathione peroxidases, and glutathione S-transferases, which share some phylogenetic, structural, and catalytic properties. The substrate specificity, as well as the similarities and differences in the catalytic mechanisms of these enzymes, are discussed in detail. The role of peroxiredoxins, glutathione peroxidases, and glutathione S-transferases in the regulation of hydroperoxide-mediated intracellular and intercellular signaling and interactions of these enzymes with receptors and non-receptor proteins are described. An important contribution of hydroperoxide-reducing enzymes to the antioxidant protection and regulation of such cell processes as growth, differentiation, and apoptosis is demonstrated.


Assuntos
Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/química , Radicais Livres/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Filogenia
20.
Biochemistry (Mosc) ; 86(11): 1418-1433, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906041

RESUMO

In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases - in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.


Assuntos
Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA