Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Exp Bot ; 74(21): 6749-6759, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599380

RESUMO

The presence or absence of awns-whether wheat heads are 'bearded' or 'smooth' - is the most visible phenotype distinguishing wheat cultivars. Previous studies suggest that awns may improve yields in heat or water-stressed environments, but the exact contribution of awns to yield differences remains unclear. Here we leverage historical phenotypic, genotypic, and climate data for wheat (Triticum aestivum) to estimate the yield effects of awns under different environmental conditions over a 12-year period in the southeastern USA. Lines were classified as awned or awnless based on sequence data, and observed heading dates were used to associate grain fill periods of each line in each environment with climatic data and grain yield. In most environments, awn suppression was associated with higher yields, but awns were associated with better performance in heat-stressed environments more common at southern locations. Wheat breeders in environments where awns are only beneficial in some years may consider selection for awned lines to reduce year-to-year yield variability, and with an eye towards future climates.


Assuntos
Grão Comestível , Triticum , Triticum/genética , Fenótipo , Resposta ao Choque Térmico , Sudeste dos Estados Unidos
2.
BMC Genomics ; 22(1): 402, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058974

RESUMO

BACKGROUND: Genetic variation in growth over the course of the season is a major source of grain yield variation in wheat, and for this reason variants controlling heading date and plant height are among the best-characterized in wheat genetics. While the major variants for these traits have been cloned, the importance of these variants in contributing to genetic variation for plant growth over time is not fully understood. Here we develop a biparental population segregating for major variants for both plant height and flowering time to characterize the genetic architecture of the traits and identify additional novel QTL. RESULTS: We find that additive genetic variation for both traits is almost entirely associated with major and moderate-effect QTL, including four novel heading date QTL and four novel plant height QTL. FT2 and Vrn-A3 are proposed as candidate genes underlying QTL on chromosomes 3A and 7A, while Rht8 is mapped to chromosome 2D. These mapped QTL also underlie genetic variation in a longitudinal analysis of plant growth over time. The oligogenic architecture of these traits is further demonstrated by the superior trait prediction accuracy of QTL-based prediction models compared to polygenic genomic selection models. CONCLUSIONS: In a population constructed from two modern wheat cultivars adapted to the southeast U.S., almost all additive genetic variation in plant growth traits is associated with known major variants or novel moderate-effect QTL. Major transgressive segregation was observed in this population despite the similar plant height and heading date characters of the parental lines. This segregation is being driven primarily by a small number of mapped QTL, instead of by many small-effect, undetected QTL. As most breeding populations in the southeast U.S. segregate for known QTL for these traits, genetic variation in plant height and heading date in these populations likely emerges from similar combinations of major and moderate effect QTL. We can make more accurate and cost-effective prediction models by targeted genotyping of key SNPs.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Genômica , Fenótipo , Melhoramento Vegetal , Triticum/genética
3.
New Phytol ; 225(1): 326-339, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465541

RESUMO

Awns are stiff, hair-like structures which grow from the lemmas of wheat (Triticum aestivum) and other grasses that contribute to photosynthesis and play a role in seed dispersal. Variation in awn length in domesticated wheat is controlled primarily by three major genes, most commonly the dominant awn suppressor Tipped1 (B1). This study identifies a transcription repressor responsible for awn inhibition at the B1 locus. Association mapping was combined with analysis in biparental populations to delimit B1 to a distal region of 5AL colocalized with QTL for number of spikelets per spike, kernel weight, kernel length, and test weight. Fine-mapping located B1 to a region containing only two predicted genes, including C2H2 zinc finger transcriptional repressor TraesCS5A02G542800 upregulated in developing spikes of awnless individuals. Deletions encompassing this candidate gene were present in awned mutants of an awnless wheat. Sequence polymorphisms in the B1 coding region were not observed in diverse wheat germplasm whereas a nearby polymorphism was highly predictive of awn suppression. Transcriptional repression by B1 is the major determinant of awn suppression in global wheat germplasm. It is associated with increased number of spikelets per spike and decreased kernel size.


Assuntos
Mapeamento Cromossômico , Loci Gênicos , Proteínas Repressoras/metabolismo , Supressão Genética , Transcrição Gênica , Triticum/anatomia & histologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Segregação de Cromossomos/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos/genética , Endogamia , Tamanho do Órgão , Proteínas de Plantas/química , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Recombinação Genética/genética , Regulação para Cima/genética
4.
Mol Genet Genomics ; 293(5): 1231-1243, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872926

RESUMO

Winter wheats require a long exposure to cold temperatures (vernalization) to accelerate flowering. However, varieties differ in the length of the period of cold required to saturate the vernalization response. Here we show that single nucleotide polymorphisms (SNP) at the binding site of the GRP2 protein in the VRN-A1 first intron (henceforth, RIP3) are associated with significant differences in heading time after a partial vernalization treatment. The ancestral winter VRN-A1 allele in 'Triple Dirk C' has one SNP in the RIP3 region (1_SNP) relative to the canonical RIP3 sequence, whereas the derived 'Jagger' allele has three SNPs (3_SNPs). Both varieties have a single VRN-A1 copy encoding identical proteins. In an F2 population generated from a cross between these two varieties, plants with the 3_SNPs haplotype headed significantly earlier (P < 0.001) than those with the 1_SNP haplotype, both in the absence of vernalization (17 days difference) and after 3-weeks of vernalization (11 days difference). Plants with the 3_SNPs haplotype showed higher VRN-A1 transcript levels than those with the 1_SNP haplotype. The 3_SNPs haplotype was also associated with early heading in a panel of 127 winter wheat varieties grown in three separate controlled-environment experiments under partial vernalization (36 to 54 days, P < 0.001) and one experiment under field conditions (21 d, P < 0.0001). The RIP3 polymorphisms can be used by wheat breeders to develop winter wheat varieties adapted to regions with different duration or intensity of the cold season.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Triticum/crescimento & desenvolvimento , Regulação para Cima , Sítios de Ligação , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Haplótipos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Triticum/genética
5.
Theor Appl Genet ; 128(3): 465-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533209

RESUMO

KEY MESSAGE: A new powdery mildew resistance gene Pm54 was identified on chromosome 6BL in soft red winter wheat. Powdery mildew is causing increasing damage to wheat production in the southeastern USA. To combat the disease, a continuing need exists to discover new genes for powdery mildew resistance and to incorporate those genes into breeding programs. Pioneer(®) variety 26R61 (shortened as 26R61) and AGS 2000 have been used as checks in the Uniform Southern Soft Red Winter Wheat Nursery for a decade, and both have provided good resistance across regions during that time. In the present study, a genetic analysis of mildew resistance was conducted on a RIL population developed from a cross of 26R61 and AGS 2000. Phenotypic evaluation was conducted in the field at Plains, GA, and Raleigh, NC, in 2012 and 2013, a total of four environments. Three quantitative trait loci (QTL) with major effect were consistently detected on wheat chromosomes 2BL, 4A and 6BL. The 2BL QTL contributed by 26R61 was different from Pm6, a widely used gene in the southeastern USA. The other two QTL were identified from AGS 2000. The 6BL QTL was subsequently characterized as a simple Mendelian factor when the population was inoculated with a single Blumeria graminis f. sp. tritici (Bgt) isolate in controlled environments. Since there is no known powdery mildew resistance gene (Pm) on this particular location of common wheat, the gene was designated Pm54. The closely linked marker Xbarc134 was highly polymorphic in a set of mildew differentials, indicating that the marker should be useful for pyramiding Pm54 with other Pm genes by marker-assisted selection.


Assuntos
Ascomicetos , Resistência à Doença/genética , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
6.
Genetics ; 221(3)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35536185

RESUMO

Wheat (Triticum aestivum) yield is impacted by a diversity of developmental processes which interact with the environment during plant growth. This complex genetic architecture complicates identifying quantitative trait loci that can be used to improve yield. Trait data collected on individual processes or components of yield have simpler genetic bases and can be used to model how quantitative trait loci generate yield variation. The objectives of this experiment were to identify quantitative trait loci affecting spike yield, evaluate how their effects on spike yield proceed from effects on component phenotypes, and to understand how the genetic basis of spike yield variation changes between environments. A 358 F5:6 recombinant inbred line population developed from the cross of LA-95135 and SS-MPV-57 was evaluated in 2 replications at 5 locations over the 2018 and 2019 seasons. The parents were 2 soft red winter wheat cultivars differing in flowering, plant height, and yield component characters. Data on yield components and plant growth were used to assemble a structural equation model to characterize the relationships between quantitative trait loci, yield components, and overall spike yield. The effects of major quantitative trait loci on spike yield varied by environment, and their effects on total spike yield were proportionally smaller than their effects on component traits. This typically resulted from contrasting effects on component traits, where an increase in traits associated with kernel number was generally associated with a decrease in traits related to kernel size. In all, the complete set of identified quantitative trait loci was sufficient to explain most of the spike yield variation observed within each environment. Still, the relative importance of individual quantitative trait loci varied dramatically. Path analysis based on coefficients estimated through structural equation model demonstrated that these variations in effects resulted from both different effects of quantitative trait loci on phenotypes and environment-by-environment differences in the effects of phenotypes on one another, providing a conceptual model for yield genotype-by-environment interactions in wheat.


Assuntos
Locos de Características Quantitativas , Triticum , Genótipo , Fenótipo , Triticum/genética
7.
Saudi J Kidney Dis Transpl ; 31(4): 821-825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801243

RESUMO

The study is aimed to assess attitudes, knowledge, and social perceptions toward organ donation and transplantation in Eastern Morocco and therefore understand what sets back this activity's expansion and progression. We conducted a cross-sectional study involving three groups of persons that are theoretically involved in the process of organ donation (medical students, law students, and nurses). Data were collected using an anonymous questionnaire related to the cultural, religious, medical, and legal aspects of organ donation and transplantation. Six hundred questionnaires were distributed. The participation rate in the study was 71%, with female predominance and participants were mainly from an average socioeconomic level. Fifty- one percent of the participants were medical students. About 87.1% had already heard about organ transplantation in Morocco, but most of them felt that they were not sufficiently informed. 57.9% of the participants were favorable with some reluctance to organ donation, 28.7% were unconditionally favorable, and 5.9% were totally unfavorable. Only 46% of the participants accepted living organ donation, whereas 47.1% did not. Moreover, 64.7% of the participants accepted organ donation after their death, evoking the desire to help others and save lives. According to our survey, 55.1% of our participants considered that the decision to donate their organs after death belongs to them. About 44.9% think they should discuss this decision with their relatives and 50% said their culture and religion influence their decisions. Our work did reveal an insufficient level of awareness about various aspects of the topic. Moreover, a high pro-portion of the participants did not have positive attitudes toward donating, mainly driven by religious, cultural beliefs and perceived risks to the donor. The reasons of refusal should be analyzed carefully to improve acceptability toward organ donation and transplantation.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Percepção Social/psicologia , Obtenção de Tecidos e Órgãos/estatística & dados numéricos , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Marrocos/epidemiologia , Adulto Jovem
8.
PLoS One ; 11(5): e0154242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163605

RESUMO

In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Locos de Características Quantitativas , Proteínas Repressoras/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Éxons , Flores/genética , Flores/crescimento & desenvolvimento , Íntrons , Diester Fosfórico Hidrolases/metabolismo , Melhoramento Vegetal , Pirofosfatases/metabolismo , Característica Quantitativa Herdável , Proteínas Repressoras/metabolismo , Estações do Ano , Fatores de Tempo , Triticum/crescimento & desenvolvimento
9.
Funct Plant Biol ; 29(4): 495-503, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32689494

RESUMO

The impact of high temperatures on accumulation of starch in the grain of wheat (Triticum aestivum L.) is usually attributed to direct effects of the stress on the enzymes involved. However, roots are extremely sensitive to temperatures that can be as high as those experienced by the shoots, and their role in whole-plant responses should be considered. Wheat (cv. Len) was grown at 15/15, 30/15, 15/30, and 30/30˚C shoot/root temperatures during maturation, and accumulation of dry matter and N, contents of sucrose and starch, and activities of enzymes in the pathway of starch assimilation in the endosperm, were measured weekly. Dry matter and N accumulation were affected more by root than by shoot temperatures. High whole-plant temperatures (30/30˚C) accelerated linear grain growth but diminished the duration of assimilation, the contents of sucrose and starch, and the activities of the enzymes involved. The effects of high root temperature (15/30˚C) resembled those of high whole-plant temperature, whereas low root temperature (30/15˚C) tended to ameliorate them. Sucrose synthase and soluble starch synthase were affected more than the other enzymes by high shoot and/or root temperature. However, treatments that caused the lowest activities resulted in the fastest, but briefest, linear rates of grain growth. We concluded that shoots and roots interact in the response of wheat to high temperature, and that stress on both organs affects accumulation of starch in grain.

10.
Funct Plant Biol ; 30(9): 939-945, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32689078

RESUMO

Preharvest sprouting of wheat (Triticum aestivum L.) involves several plant hormones, but a role for indoleacetic acid (IAA) and its precursor, tryptophan, has not been demonstrated. Our objectives were to determine the roles of IAA, tryptophan, and related compounds in germination of cultivars that differed in susceptibility to preharvest sprouting. L-Tryptophan strongly inhibited germination of embryos excised from caryopses that were highly dormant at harvest but not of embryos from caryopses that had little innate dormancy. The embryos responded similarly to indoleacetaldehyde, IAA, and synthetic auxins, suggesting that tryptophan functioned as a precursor of IAA. Indoleacetaldehyde oxidase inhibitors alleviated the adverse effects of tryptophan and indoleacetaldehyde, and an auxin antagonist decreased the inhibitory action of tryptophan and IAA on embryos from dormant caryopses, further suggesting that IAA was involved. Changes in sensitivity to IAA during afterripening also supported a role for auxin in dormancy. Embryos from caryopses that were highly dormant at harvest gradually lost sensitivity to IAA during afterripening, whereas intact caryopses were insensitive to IAA. The results implicated IAA in dormancy of wheat caryopses and indicated that the auxin might complement the role of abscisic acid in germination. The importance of using dormant caryopses and arresting afterripening in investigations of seed dormancy was noted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA