Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810021

RESUMO

The derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) are pivotal ingredients for a large number of functional, stimuli-responsive materials and therapeutic molecules based on their photophysical properties, and there is a urgent need to understand and predict their optical traits prior to investing a large amount of resources in preparing them. Density functional theory (DFT) and time-dependent DFT (TDDFT) computations were performed to calculate the excitation energies of the lowest-energy singlet excited state of a large series of common BODIPY derivatives employing various functional aiming at the best possible combination providing the least deviations from the experimental values. Using the common "fudge" correction, a series of combinations was investigated, and a methodology is proposed offering equal or better performances than what is reported in the literature.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Modelos Moleculares , Teoria da Densidade Funcional , Estrutura Molecular
2.
Inorg Chem ; 58(7): 4665-4678, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888796

RESUMO

Three series of porphyrins containing a Zn(II) central metal ion and zero, one, or two phosphoryl groups at the meso-positions of the macrocycle were characterized as to their electrochemical, spectroscopic, and structural properties in nonaqueous media. The investigated compounds are represented as 5,15-bis(4'-R-phenyl)porphyrinatozinc, 10-(diethoxyphosphoryl)-5,15-bis(4'-R-phenyl)porphyrinatozinc, and 5,15-bis(diethoxyphosphoryl)-10,20-bis(4'-R-phenyl)porphyrinatozinc, where R = OMe, Me, H, or CN. Linear-free energy relationships are observed between the measured redox potentials at room temperature and the electronic nature of the substituents at the 5 and 15 meso-phenyl groups of the macrocycle. The mono- and bis-phosphoryl derivatives with two p-cyanophenyl substituents provide electrochemical evidence for aggregation at low temperature, a greater degree of aggregation being observed in the case of 5,15-bis(diethoxyphosphoryl)-10,20-bis(4'-cyanophenyl)porphyrinatozinc(II). This compound was characterized in further detail by variable-temperature 1H and 31P{1H} NMR spectroscopy in solution combined with single crystal X-ray analysis in the solid state. The data obtained from these measurements indicate that this porphyrin has a dimeric structure in CDCl3 at 223-323 K but forms a 2D polymeric network when it is crystallized from a CHCl3/MeOH mixture.

3.
Inorg Chem ; 56(5): 2506-2517, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191847

RESUMO

The demetalation of a precursor dyad, 3, built upon a zinc(II)-containing artificial special pair and free-base antenna, leads to a new dyad, 4, for singlet energy transfer composed of cofacial free-base porphyrins (acceptor), [Fb]2 bridged by a 1,4-C6H4 group to a free-base antenna (donor), [Fb]. This dyad exhibits the general structure [M]2-C6H4-[Fb], where [M]2 = [Fb]2, and completes a series reported earlier, where [M]2 = [Mg]2 (2) and [Zn]2 (3). The latter dyads exhibit a bidirectional energy-transfer process at 298 K for 2 and at 77 K for 3. Interestingly, a very scarce case of cycling process is observed for the zinc-containing dyad at 298 K. The newly reported compound 4 exhibits a quasi unidirectional process [Fb]*→[Fb]2 (major, kET = 2 × 1011 s-1 at 298 K), where the remaining is [Fb]2*→[Fb] (minor, kET = 8 × 109 s-1 at 298 K), thus completing all possibilities. The results are analyzed in terms of molecular orbital couplings (density functional theory computations), Förster resonance energy transfer parameters, and temperature dependence of the decay traces. This study brings major insights about artificial special pair-containing dyads and clearly contributes to a better understanding of the communication between the two main components of our models and those already described in the literature.

4.
Inorg Chem ; 56(5): 3055-3070, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28195721

RESUMO

The synthesis and structural characterization, both in solution by means of 1H and 31P NMR and UV-vis spectroscopies and in the solid state by X-ray diffraction on single crystal, of a series of gallium(III) and indium(III) meso-mono(diethoxyphosphoryl)porphyrins bearing different peripheral substituents as well as the corresponding monoesters and phosphonic acids are reported. This work describes the first example of the X-ray structure of a self-assembled dimer formed via strong binding between the oxygen atom of the phosphonate substituent and the gallium(III) cations of adjacent porphyrin molecules [Ga-O = 1.9708(13) Å].

5.
Analyst ; 141(6): 1912-7, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26890271

RESUMO

Reusable surface plasmon resonance chips allowing the quantitative and selective detection of mercury(ii) ions in water at the 0.01 nM level are reported. The surface-modified gold sensor consists of a rarefied self-assembled monolayer of octanethiol topped with a Langmuir-Blodgett monolayer of an amphiphilic and highly-specific chelator. The interdigitated architecture confers to the bilayer a high packing density, surface coverage, and binding-group accessibility.

6.
Inorg Chem ; 54(7): 3501-12, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25789714

RESUMO

Two series of diphosphoryl-substituted porphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). The investigated compounds are 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrins (Ph)2(P(O)(OEt)2)2PorM and 5,15-bis(diethoxyphosphoryl)-10,20-di(para-carbomethoxyphenyl)porphyrins (PhCOOMe)2(P(O)(OEt)2)2PorM where M = 2H, Co(II), Ni(II), Cu(II), Zn(II), Cd(II), or Pd(II). The free-base and five metalated porphyrins with nonredox active centers undergo two ring-centered oxidations and two ring-centered reductions, the latter of which is followed by a chemical reaction of the porphyrin dianion to give an anionic phlorin product. The phlorin anion is electroactive and can be reoxidized by two electrons to give back the starting porphyrin, or it can be reversibly reduced by one electron at more negative potentials to give a phlorin dianion. The chemical conversion of the porphyrin dianion to a phlorin anion proceeds at a rate that varies with the nature of the central metal ion and the solvent. This rate is slowest in the basic solvent pyridine as compared to CH2Cl2 and PhCN, giving further evidence for the involvement of protons in the chemical reaction leading to phlorin formation. Calculations of the electronic structure were performed on the Ni(II) porphyrin dianion, and the most favorable atoms for electrophilic attack were determined to be the two phosphorylated carbon atoms. Phlorin formation was not observed after the two-electron reduction of the cobalt porphyrins due to the different oxidation state assignment of the doubly reduced species, a Co(I) π anion radical in one case and an M(II) dianion for all of the other derivatives. Each redox reaction was monitored by thin-layer UV-visible spectroelectrochemistry, and an overall mechanism for each electron transfer is proposed on the basis of these data.

7.
Inorg Chem ; 52(15): 8360-8, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23844900

RESUMO

Using a selective stepwise Suzuki cross-coupling reaction, two trimers built on three different chromophores were prepared. These trimers exhibit a D(^)A1-A2 structure where the donor D (octa-ß-alkyl zinc(II)porphyrin either as diethylhexamethyl, 10a, or tetraethyltetramethyl, 10b, derivatives) through space transfers the S1 energy to two different acceptors, di(4-ethylbenzene) zinc(II)porphyrin (A1; acceptor 1) placed cofacial with D, and the corresponding free base (A2; acceptor 2), which is meso-meso-linked with A1. This structure design allows for the possibility of comparing two series of assemblies, 9a,b (D(^)A1) with 10a,b (D(^)Â1-A2), for the evaluation of the S1 energy transfer for the global process D*→A2 in the trimers. From the comparison of the decays of the fluorescence of D, the rates for through space energy transfer, kET for 10a,b (kET ≈ 6.4 × 10(9) (10a), 5.9 × 10(9) s(-1) (10b)), and those for the corresponding cofacial D(^)A1 systems, 9a,b, (kET ≈ 5.0 × 10(9) (9a), 4.7 × 10(9) s(-1) (9b)), provide an estimate for kET for the direct through space D*→A2 process (i.e., kET(D(^)A1-A2) - kET(D(^)A1) = kET(D*→A2) ∼ 1 × 10(9) s(-1)). This channel of relaxation represents ∼15% of kET for D*→A1.


Assuntos
Desenho de Fármacos , Transferência de Energia , Metaloporfirinas/química , Metaloporfirinas/síntese química , Modelos Moleculares , Conformação Molecular
8.
Inorg Chem ; 52(2): 999-1008, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23297696

RESUMO

Copper(II) 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrin was obtained and characterized by means of cyclic voltammetry, electron paramagnetic resonance, Fourier transform infrared, and UV-visible spectroscopy. Three crystalline forms were grown and studied by means of X-ray diffraction methods (single crystal and powder). The highly electron-withdrawing effect of phosphoryl groups attached directly to the porphyrin macrocycle results in a self-assembling process, with formation of a stable 2D coordination network, which is unusual for copper(II) porphyrins. The resulting 2D structure is a rare example of an assembly based on copper(II) porphyrins where the copper(II) central metal ion is six-coordinated because of a weak interaction with two phosphoryl groups of adjacent porphyrins. The other polymorph of copper(II) 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrin contains individual (isolated) porphyrin molecules with four-coordinated copper(II) in a distorted porphyrin core. This polymorph can be obtained only by slow diffusion of a copper acetate/methanol solution into solutions of free base 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrin in chloroform. It converts to the 2D structure after dissolution in chloroform followed by consecutive crystallizations, using slow diffusion of hexane. A six-coordinated copper(II) porphyrin containing two axially coordinated dioxane molecules was also obtained and characterized by X-ray diffraction crystallography. The association of copper(II) 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrin in solution was also studied.


Assuntos
Cobre/química , Porfirinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Fosforilação
9.
Integr Zool ; 18(1): 15-26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35500584

RESUMO

Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.


Assuntos
Porfirinas , Animais , Porfirinas/química , Ecossistema , Mamíferos
10.
Chemistry ; 18(47): 15092-104, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23042454

RESUMO

The first synthesis and self-organization of zinc ß-phosphorylporphyrins in the solid state and in solution are reported. ß-Dialkoxyphosphoryl-5,10,15,20-tetraphenylporphyrins and their Zn(II) complexes have been synthesized in good yields by using Pd- and Cu-mediated carbon-phosphorous bond-forming reactions. The Cu-mediated reaction allowed to prepare the mono-ß-(dialkoxyphosphoryl)porphyrins 1 Zn-3 Zn starting from the ß-bromo-substituted zinc porphyrinate ZnTPPBr (TPP = tetraphenylporphyrin) and dialkyl phosphites HP(O)(OR)(2) (R = Et, iPr, nBu). The derivatives 1 Zn-3 Zn were obtained in good yields by using one to three equivalents of CuI. When the reaction was carried out in the presence of catalytic amounts of palladium complexes in toluene, the desired zinc derivative 1 Zn was obtained in up to 72% yield. The use of a Pd-catalyzed C-P bond-forming reaction was further extended to the synthesis of ß-poly(dialkoxyphosphoryl)porphyrins. An unprecedented one-pot sequence involving consecutive reduction and phosphorylation of H(2)TPPBr(4) led to the formation of a mixture of the 2,12- and 2,13-bis(dialkoxy)phosphorylporphyrins 5 H(2) and 6 H(2) in 81% total yield. According to the X-ray diffraction studies, 1 Zn and 3 Zn are partially overlapped cofacial dimers formed through the coordination of two Zn centers by two phosphoryl groups belonging to the adjacent molecules. The equilibrium between the monomeric and the dimeric species exists in solutions of 1 Zn and 3 Zn in weakly polar solvents according to spectroscopic data (UV/Vis absorption and NMR spectroscopy). The ratio of each form is dependent on the concentration, temperature, and traces of water or methanol. These features demonstrated that zinc ß-phosphorylporphyrins can be regarded as new model compounds for the weakly coupled chlorophyll pair in the photosynthesis process.


Assuntos
Metaloporfirinas/síntese química , Zinco/química , Cristalografia por Raios X , Metaloporfirinas/química , Modelos Moleculares , Estrutura Molecular , Soluções
11.
Chemistry ; 17(24): 6689-95, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21538607

RESUMO

Metal-organic frameworks constructed by self-assembly of metal ions and organic linkers have recently been of great interest in the preparation of porous hybrid materials with a wide variety of functions. Despite much research in this area and the large choice of building blocks used to fine-tune pore size and structure, it remains a challenge to synthesise frameworks composed of polyamines to tailor the porosity and adsorption properties for CO(2). Herein, we describe a rigid and microporous three-dimensional metal-organic framework with the formula [Zn(2)(L)(H(2)O)]Cl (L=1,4,7-tris(4-carboxybenzyl)-1,4,7-triazacyclononane) synthesised in a one-pot solvothermal reaction between zinc ions and a flexible cyclic polyaminocarboxylate. We have demonstrated, for the first time, that a porous rigid framework can be obtained by starting from a flexible amine building block. Sorption measurements revealed that the material exhibited a high surface area (135 m(2) g(-1)) and was the best compromise between capacity and selectivity for CO(2) over CO, CH(4), N(2) and O(2); as such it is a promising new selective adsorbent for CO(2) capture.

12.
Inorg Chem ; 50(8): 3479-89, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405090

RESUMO

A series of homobimetallic manganese cofacial porphyrin-corrole dyads were synthesized and investigated as to their electrochemistry, spectroelectrochemistry, and ligand binding properties in nonaqueous media. Four dyads were investigated, each of which contained a Mn(III) corrole linked in a face-to-face arrangement with a Mn(III) porphyrin. The main difference between compounds in the series is the type of spacer, 9,9-dimethylxanthene, anthracene, dibenzofuran, or diphenylether, which determines the distance and interaction between the metallomacrocycles. Each redox process of the porphyrin-corrole dyads was assigned on the basis of spectroscopic and electrochemical data and by comparison with reactions and properties of the monocorrole and the monoporphyrin which were examined under the same solution conditions. The Mn(III) porphyrin part of the dyad undergoes two major one-electron reductions in pyridine and benzonitrile, the first of which involves a Mn(III)/Mn(II) process and the second the addition of an electron to the conjugated π-ring system of the macrocycle. The Mn(III) corrole part of the dyads also exhibits two major redox processes, one involving Mn(III)/Mn(II) and the other Mn(III) to Mn(IV) under the same solution conditions. The potentials and reversibility of each electron transfer reaction were shown to depend upon the solvent, type of spacer separating the two macrocycles, and the presence or absence of axial ligation, the latter of which was investigated in detail for the case of acetate ion which was found to bind within the cavity of the dyad to both manganese centers, both before and after the stepwise electroreduction to the Mn(II) forms of the two macrocycles. An intramolecular chloride ion exchange between the porphyrin part of the dyads which contain Mn(III)Cl and the singly oxidized corrole in the dyad is observed after the Mn(III)/Mn(IV) reaction of the corrole, suggesting that chloride is coordinated inside the cavity in the neutral compound.


Assuntos
Manganês/química , Metaloporfirinas/química , Porfirinas/química , Eletroquímica , Metaloporfirinas/síntese química , Estrutura Molecular , Espectrofotometria Ultravioleta
13.
Int J Mol Sci ; 12(12): 8797-835, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272105

RESUMO

X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Dicroísmo Circular , Imãs , Raios X
14.
Chemistry ; 16(21): 6352-64, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20401876

RESUMO

The present study reports the synthesis and rational design of porous structured materials by using a templating method. A tetraethoxysilylated tripodal tetraamine (TREN) was covalently incorporated in a silica framework with a double imprint: A surfactant template and a metal ion imprint. The presence of a cationic surfactant (CTAB) endowed the material with a high porosity, and the tripodal or square-pyramidal topology of the ligand was preserved thanks to the use of the silylated Cu(II) complex. After removal of the surfactant and de-metalation, the incorporated tetraamine was quantitatively complexed by CuCl(2) and the material has shown after thermal activation that a reversible binding of O(2) on the metal ions occurred. This chemisorption process was monitored by UV/Vis and EPR spectroscopies, and the Cu:O(2) adduct was postulated to be an end-on mu-eta(1):eta(1)-peroxodicopper(II) complex bridged by a chloride ion. The Cu(I)-active species, formed during the activation step, were fully recovered during several O(2) binding cycles. The high reactivity of the copper complexes and the room-temperature stability of the dioxygen adduct were explained by the fine adaptability of the tripodal ligand to different geometries, the confinement of the active sites in the hybrid silica that protect them from degradation by a control of the metal-ion microenvironment, as well as the short-range lamellar order of the copper complexes in the framework.


Assuntos
Aminas/química , Complexos de Coordenação/química , Cobre/química , Oxigênio/química , Dióxido de Silício/química , Monóxido de Carbono/química , Espectroscopia de Ressonância de Spin Eletrônica , Nitrogênio/química , Porosidade
15.
Chemistry ; 16(33): 10226-33, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20607767

RESUMO

In this paper, we investigate the cation-exchange properties of a self-assembled hybrid material towards trivalent ions, lanthanides (La(3+), Eu(3+), Gd(3+), Yb(3+)) and Fe(3+). The bis-zwitterionic lamellar material was prepared by sol-gel process from only 3-aminopropyltriethoxysilane (APTES), succinic anhydride, and ethylenediamine. In ethanol heated under reflux, the exchange ethylenediammonium versus Ln(3+) proved to be complete by complexometry measurements and elemental analyses, one Cl(-) ion per one Ln(III) remaining as expected for charge balance. In aqueous solution at 20 degrees C, the material was found to be selective towards lanthanide in spite of the similarity of their ionic radii. The cation uptake depends on the nature of the salt, the difference between two lanthanides reaching up to 20 % in some cases. Finally, ion-exchange reaction with FeCl(3) was chosen as a probe to get more information on the material after incorporation of trivalent ions. Based on Mössbauer spectroscopic investigations on the resulting material in conjunction with the XRD analysis of materials containing trivalent ions, a structural model was proposed to describe the incorporation of trivalent ions by exchange reaction within the original zwitterionic material.

16.
Chemistry ; 15(13): 3110-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19197918

RESUMO

pi-pi assisted: Photoinduced electron transfer from cofacial porphyrin dimers to electron acceptors is prominently accelerated, whereas the back electron transfer is decelerated, relative to the corresponding porphyrin monomer (see figure).The radical cation of zinc tetrapentylporphyrin is dimerized with an excess of the neutral counterpart to form the dimer radical cation in which the unpaired electron is delocalized over both porphyrin rings. The dimeric radical cation exhibits an NIR absorption spectrum characteristic of weak pi-bond formation between the porphyrin rings. When cofacial porphyrin dimers, linked by different spacers, are oxidized such pi-bond formation between the porphyrin rings is also recognized in cyclic voltammetry, and Vis/NIR and ESR spectroscopic measurements. The dynamics of photoinduced electron transfer from the triplet excited states of cofacial porphyrin dimers to a series of electron acceptors were investigated by using laser flash photolysis measurements and compared with the porphyrin monomer. The rates of photoinduced electron-transfer reactions of cofacial porphyrin dimers are prominently accelerated compared with the reference monomer. The driving-force dependence of the rate constants of photoinduced electron-transfer reactions was analyzed in light of the Marcus theory of electron transfer to afford the reorganization energies of electron transfer (lambda). The lambda values of cofacial porphyrin dimers are significantly smaller than those of the porphyrin monomer when compared at the same driving force of the photoinduced electron transfer. The lambda values increase linearly with an increase in the driving force of the photoinduced electron transfer. This is accompanied by an increase in the distance between electron donor and acceptor molecules, where the electron transfer occurs. The enhanced electron-transfer properties of cofacial porphyrin dimers, in relation with the important role of the special pair in the photosynthetic reaction center, result from the smaller reorganization energy (lambda) together with the larger driving force of the photoinduced electron transfer due to the pi-electron delocalization in the dimer radical cations.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Porfirinas/química , Algoritmos , Transporte de Elétrons , Modelos Químicos , Estrutura Molecular , Oxirredução , Fotoquímica/métodos , Termodinâmica , Zinco/química
17.
Inorg Chem ; 48(16): 7613-29, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19624118

RESUMO

A series of linear monomers (spacer-M(P)), dimers (M(P)-spacer-M'(P)), and trimers (M(P)-spacer-M'(P)-spacer-M(P)) of spacer/metalloporphyrin systems (M' = Zn, M = Zn, Pd, P = porphyrin, and spacer = trans-C(6)H(4)C[triple bond]CPtL(2)C[triple bond]CC(6)H(4)- (L = PEt(3))) including mixed metalloporphyrin compounds, were synthesized and characterized. The S(1) and T(1) energy transfers Pd(P)*-->Zn(P) occur with rates of approximately 2 x 10(9) s(-1), S(1), and 0.15 x 10(3) (slow component) and 4.3 x 10(3) s(-1) (fast component), T(1). On the basis of a literature comparison with a related dyad, the Pt atom in the conjugated chain slows down the transfers. The excitation in the absorption band of the trans-C(6)H(4)C[triple bond]CPtL(2)C[triple bond]CC(6)H(4)- spacer in the 300-360 nm range also leads to T(1) energy transfer (spacer* --> M(P); M = Zn, Pd) with rates of 10(4) s(-1).


Assuntos
Dimerização , Transferência de Energia , Metaloporfirinas/química , Compostos Organoplatínicos/química , Paládio/química , Zinco/química , Absorção , Ligantes , Medições Luminescentes , Modelos Moleculares , Conformação Molecular , Análise Espectral , Fatores de Tempo
18.
Inorg Chem ; 48(6): 2571-82, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19215120

RESUMO

A series of biscobalt cofacial porphyrin-corrole dyads bearing mesityl substituents at the meso positions of the corrole ring were investigated as to their electrochemistry, spectroelectrochemistry, and CO binding properties in nonaqueous media and then applied to the surface of a graphite electrode and tested as electrocatalysts for the reduction of dioxygen to water or hydrogen peroxide in air-saturated aqueous solutions containing 1 M HClO(4). The catalytic reduction of O(2) with the same dyads was also investigated in the homogeneous phase using 1,1'-dimethylferrocene as a reductant in PhCN containing HClO(4). The examined compounds are represented as (PMes(2)CY)Co(2), where P = a porphyrin dianion, Mes(2)C = a corrole trianion with two mesityl groups in trans meso-positions of the macrocycle, and Y is one of three bridging groups separating the two metallomacrocycles in a face-to-face arrangement, either with 9,9-dimethylxanthene, dibenzofuran, or diphenylether as linkers. Cyclic voltammetry and rotating disk electrode voltammetry revealed that the examined compounds are all catalytically active toward the electroreduction of dioxygen in acid media giving H(2)O(2) or H(2)O depending upon the type of linkage (Y) and the initial site of electron transfer which, in nonaqueous media, could be switched between the corrole and the porphyrin metal center by variations of substituents on the corrole macrocycle or the gas above the solution. The homogeneous reduction of dioxygen via a two- or four-electron transfer process was also investigated using 1,1'-dimethylferrocene as reductant in PhCN containing HClO(4).

19.
Inorg Chem ; 47(21): 9930-40, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18844340

RESUMO

The unsaturated cyclic [M3(dppm)3(CO)](2+) clusters (M = Pt, Pd; dppm = Ph2PCH2PPh2; such as PF6(-) salt) exhibit a cavity formed by the six dppm-phenyl groups placed like a picket fence above the unsaturated triangular M3 dicationic center. Electrostatic interactions of the M(3+) units inside this cavity with the carboxylate anion RCO2(-) [R = tetraphenylporphyrinatozinc(II), ZnTPP; p-phenyltritolylporphyrinatozinc(II), ZnTTPP; p-phenyltritolylporphyrinatopalladium(II), PdTTPP] form dyads for through-space triplet energy transfers. The binding constants are on the order of 20,000 M(-1) in all six cases (298 K). The energy diagram built upon absorption and emission spectra at 298 and 77 K places the [Pt3(dppm)3(CO)](2+) and [Pd3(dppm)3(CO)](2+) as triplet energy donors, respectively, with respect to the ZnTPPCO2(-), ZnTTPPCO2(-), and PdTTPPCO2(-) pigments, which act as acceptors. Evidence for energy transfer is provided by the transient absorption spectra at 298 K, where triplet-triplet absorption bands of the metalloporphyrin chromophores are depicted at all time (at 298 K) with total absence of the charge-separated state in the nanosecond to microsecond time scale. Rates for energy transfer (ranging in the 10(4) s(-1) time scale) are extracted from the emission lifetimes of the [Pt3(dppm)3(CO)](2+) donor in the free chromophore and the host-guest assemblies. The emission intensity of [Pd3(dppm)3(CO)](2+) is too weak to measure its spectrum and emission lifetime in the presence of the strongly luminescent metalloporphyrin-containing materials. For the [Pd3(dppm)3(CO)](2+)...metalloporphyrin dyads, evidence for fluorescence and phosphorescence lifetime quenching of the porphyrin chromophore at 298 K is provided. These quenchings, exhibiting rates of 10(4) (triplet) and 10(8) s(-1) (singlet), are attributed to a photoinduced electron transfer from the metalloporphyrin to the cluster due to the low reduction potential.

20.
Inorg Chem ; 47(17): 7717-27, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18671345

RESUMO

A series of manganese(III) corroles were investigated as to their electrochemistry and spectroelectrochemistry in nonaqueous solvents. Up to three oxidations and one reduction were obtained for each complex depending on the solvents. The main compound discussed in this paper is the meso-substituted manganese corrole, (Mes 2PhCor)Mn, and the main points are how changes in axially coordinated anion and solvent will affect the redox potentials and UV-vis spectra of each electrogenerated species in oxidation states of Mn(III), Mn(IV), or Mn(II). The anions OAc (-), Cl (-), CN (-), and SCN (-) were found to form five-coordinate complexes with the neutral Mn(III) corrole while two OH (-) or F (-) anions were shown to bind axially in a stepwise addition to give the five- and six-coordinate complexes in nonaqueous media. In each case, complexation with one or two anionic axial ligands led to an easier oxidation and a harder reduction as compared to the uncomplexed four-coordinate species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA