RESUMO
Hereditary diffuse gastric cancer (HDGC) is a dominantly inherited cancer syndrome characterized by a high incidence of diffuse gastric cancer (DGC) and lobular breast cancer (LBC). HDGC is caused by germline mutations in 2 genes involved in the epithelial adherens junction complex, CDH1 and CTNNA1. We discuss the genetics of HDGC and the variability of its clinical phenotype, in particular the variable penetrance of advanced DGC and LBC, both within and between families. We review the pathology of the disease, the mechanism of tumor initiation, and its natural history. Finally, we describe current best practice for the clinical management of HDGC, including emerging genetic testing criteria for the identification of new families, methods for endoscopic surveillance, the complications associated with prophylactic surgery, postoperative quality of life, and the emerging field of HDGC chemoprevention.
Assuntos
Neoplasias da Mama , Carcinoma Lobular , Neoplasias Gástricas , Humanos , Feminino , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/prevenção & controle , Qualidade de Vida , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Caderinas/genética , Neoplasias da Mama/genética , Predisposição Genética para DoençaRESUMO
BACKGROUND: The incidence of diffuse-type gastric cancer is increasing steadily in the United States, Europe, and Asia. This subtype is known for aggressive clinical characteristics and transmural invasion. However, T1a diffuse-type cancers have been observed to have a better 5-year, disease-specific mortality than stage-matched intestinal tumors, supporting a clinical difference in these early-stage cancers. METHODS: Data on all living patients with T1a gastric adenocarcinoma with a finding of signet ring cell morphology on pathology and ≥1 year of follow-up from 2013 to 2023 at Memorial Sloan Kettering Cancer Center (MSK) was collected from a prospectively maintained database. Patients with known CDH1 or CTNNA1 mutations were excluded. RESULTS: In 7 of 30 patients, sporadic pathologically confirmed T1a signet ring cell (diffuse) cancer identified on initial biopsy was no longer detectable upon subsequent biopsy or resection with mean follow-up of 50 months. CONCLUSIONS: These cases allude to the distinct pathways of carcinogenesis in T1a signet ring cell cancers. Potential factors that may underlie the spontaneous regression of these T1a cancers include complete removal at initial biopsy, immune clearance, and lack of survival advantage conferred by signet ring cell genetic alterations in these cases. Given their more indolent behavior at an earlier stage, we suggest that these lesions can be closely followed by endoscopy in select circumstances with thorough disease assessment and an experienced care team.
RESUMO
Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome caused by germline variants in CDH1, the gene encoding the cell-cell adhesion molecule E-cadherin. Loss of E-cadherin in cancer is associated with cellular dedifferentiation and poor prognosis, but the mechanisms through which CDH1 loss initiates HDGC are not known. Using single-cell RNA sequencing, we explored the transcriptional landscape of a murine organoid model of HDGC to characterize the impact of CDH1 loss in early tumourigenesis. Progenitor populations of stratified squamous and simple columnar epithelium, characteristic of the mouse stomach, showed lineage-specific transcriptional programs. Cdh1 inactivation resulted in shifts along the squamous differentiation trajectory associated with aberrant expression of genes central to gastrointestinal epithelial differentiation. Cytokeratin 7 (CK7), encoded by the differentiation-dependent gene Krt7, was a specific marker for early neoplastic lesions in CDH1 carriers. Our findings suggest that deregulation of developmental transcriptional programs may precede malignancy in HDGC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Caderinas/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Neoplasias Gástricas/genética , Animais , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Organoides , Análise de Célula Única , Neoplasias Gástricas/patologia , TranscriptomaRESUMO
Accurate assessment of chemotherapy response provides the means to terminate ineffective treatment, trial alternative drug regimens or schedules and reduce dose to minimize toxicity. Here, we have compared circulating tumor DNA (ctDNA) with carcinoembryonic antigen (CEA) for the cycle by cycle assessment of chemotherapy response in 30 patients with metastatic colorectal cancer. CtDNA (quantified using individualized digital droplet PCR (ddPCR) assays) and CEA levels were determined immediately prior to each chemotherapy cycle over time periods ranging from 42-548 days (average of 10 time points/patient). Twenty-nine/thirty (97%) patients had detectable ctDNA compared with 83% whose tumors were CEA-positive (>5 ng/ml) during the monitoring course. Over the course of treatment, 20 disease progression events were detected by computed tomography; ctDNA predicted significantly more of these events than CEA (16 (80%) versus 6 (30%), respectively; P-value = 0.004). When progression was detected by both ctDNA and CEA, the rise in ctDNA occurred significantly earlier than CEA (P-value = 0.046). Partial responses to chemotherapy were also detected more frequently by ctDNA, although this was not significant (P-value = 0.07). In addition, another 28 colorectal cancer patients who underwent potentially curative surgery and showed no evidence of residual disease were monitored with ctDNA for up to 2 years. Clinical relapse was observed in 6/28 (21%) patients. Four out of 6 of these patients showed a significant increase in ctDNA at or prior to relapse. Overall, ctDNA analyses were able to be performed in a clinically relevant timeline and were a more sensitive and responsive measure of tumor burden than CEA.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/patologia , DNA de Neoplasias/genética , Biomarcadores Tumorais/análise , DNA Tumoral Circulante/análise , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA de Neoplasias/análise , Seguimentos , Humanos , Prognóstico , Estudos Prospectivos , Carga TumoralRESUMO
CDH1 encodes E-cadherin, a key protein in adherens junctions. Given that E-cadherin is involved in major cellular processes such as embryogenesis and maintenance of tissue architecture, it is no surprise that deleterious effects arise from its loss of function. E-cadherin is recognised as a tumour suppressor gene, and it is well established that CDH1 genetic alterations cause diffuse gastric cancer and lobular breast cancer-the foremost manifestations of the hereditary diffuse gastric cancer syndrome. However, in the last decade, evidence has emerged demonstrating that CDH1 mutations can be associated with lobular breast cancer and/or several congenital abnormalities, without any personal or family history of diffuse gastric cancer. To date, no genotype-phenotype correlations have been observed. Remarkably, there are reports of mutations affecting the same nucleotide but inducing distinct clinical outcomes. In this review, we bring together a comprehensive analysis of CDH1-associated disorders and germline alterations found in each trait, providing important insights into the biological mechanisms underlying E-cadherin's pleiotropic effects. Ultimately, this knowledge will impact genetic counselling and will be relevant to the assessment of risk of cancer development or congenital malformations in CDH1 mutation carriers.
Assuntos
Antígenos CD/genética , Caderinas/genética , Diferenciação Celular/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Alelos , Neoplasias da Mama/genética , Transformação Celular Neoplásica , Fenda Labial/genética , Fissura Palatina/genética , Ectrópio/genética , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Neoplasias Gástricas/genética , Anormalidades Dentárias/genéticaRESUMO
BACKGROUND: The E-cadherin gene (CDH1) is frequently mutated in diffuse gastric cancer and lobular breast cancer, and germline mutations predispose to the cancer syndrome Hereditary Diffuse Gastric Cancer. We are taking a synthetic lethal approach to identify druggable vulnerabilities in CDH1-mutant cancers. METHODS: Density distributions of cell viability data from a genome-wide RNAi screen of isogenic MCF10A and MCF10A-CDH1-/- cells were used to identify protein classes affected by CDH1 mutation. The synthetic lethal relationship between selected protein classes and E-cadherin was characterised by drug sensitivity assays in both the isogenic breast MCF10A cells and CDH1-isogenic gastric NCI-N87. Endocytosis efficiency was quantified using cholera toxin B uptake. Pathway metagene expression of 415 TCGA gastric tumours was statistically correlated with CDH1 expression. RESULTS: MCF10A-CDH1-/- cells showed significantly altered sensitivity to RNAi inhibition of groups of genes including the PI3K/AKT pathway, GPCRs, ion channels, proteosomal subunit proteins and ubiquitinylation enzymes. Both MCF10A-CDH1-/- and NCI-N87-CDH1-/- cells were more sensitive than wild-type cells to compounds that disrupted plasma membrane composition and trafficking, but showed contrasting sensitivities to inhibitors of actin polymerisation and the chloride channel inhibitor NS3728. The MCF10A-CDH1-/- cell lines showed reduced capacity to endocytose cholera toxin B. Pathway metagene analysis identified 20 Reactome pathways that were potentially synthetic lethal in tumours. Genes involved in GPCR signalling, vesicle transport and the metabolism of PI3K and membrane lipids were strongly represented amongst the candidate synthetic lethal genes. CONCLUSIONS: E-cadherin loss leads to disturbances in receptor signalling and plasma membrane trafficking and organisation, creating druggable vulnerabilities.
Assuntos
Caderinas/deficiência , Membrana Celular/metabolismo , Membrana Celular/patologia , Antígenos CD/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Transporte Proteico/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologiaRESUMO
Germline pathogenic variants in the CDH1 gene are a well-established cause of hereditary diffuse gastric cancer (HDGC) syndrome. The aim of this study was to characterize CDH1 mutations associated with HDGC from Chile, a country with one of the highest incidence and mortality rates in the world for gastric cancer (GC). Here, we prospectively include probands with family history/early onset of diffuse-type of GC. The whole coding sequence of the CDH1 gene was sequenced from genomic DNA in all patients, and a multidisciplinary team managed each family member with a pathogenic sequence variant. Thirty-six cases were included (median age 44 years/male 50%). Twenty-seven (75%) patients had diffuse-type GC at ≤50 years of age and 19 (53%) had first or second-degree family members with a history of HDGC. Two cases (5.5%) carried a non-synonymous germline sequence variant in the CDH1 gene: (a) The c.88C>A missense variant was found in a family with three diffuse-type GC cases; and (b) c.1531C>T a nonsense pathogenic variant was identified in a 22-year-old proband with no previous family history of HDGC. Of note, six family members carry the same nonsense pathogenic variant. Prophylactic gastrectomy in the proband's sister revealed stage I signet-ring cell carcinoma. The finding of 1531C>T pathogenic variant in the CDH1 in proband with no previous family history of HDGC warrants further study to uncover familial clustering of disease in CDH1 negative patients. This finding may be particularly relevant in high incidence countries, such as the case in this report.
Assuntos
Alelos , Antígenos CD/genética , Caderinas/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Gástricas/genética , Adulto , Feminino , Gastrectomia/métodos , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/prevenção & controle , Linhagem , Procedimentos Cirúrgicos Profiláticos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/prevenção & controle , Adulto JovemRESUMO
The aim of this study was to uncover the pathogenic relevance and the underlying molecular mechanism of a novel CDH1 variant found in a Hereditary Diffuse Gastric Cancer family (p.L13_L15del), which affects the signal peptide of E-cadherin without changing the remaining predicted sequence. We verified that p.L13_L15del cells yield low levels of E-cadherin, decreased cell adhesion and enhanced cell invasion. Further, we demonstrated that the disruption of the highly conserved hydrophobic core of the signal peptide hampers the binding of cellular components crucial for E-cadherin translation and translocation into the endoplasmic reticulum, constituting a new molecular basis for the loss of a tumour suppressor gene causative of hereditary cancer.
Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Sinais Direcionadores de Proteínas , Neoplasias Gástricas/genética , Adulto , Adesão Celular , Retículo Endoplasmático/metabolismo , Feminino , Variação Genética , Humanos , Masculino , Transporte Proteico , Análise de Sequência de DNA , Neoplasias Gástricas/metabolismoRESUMO
PURPOSE: Urothelial carcinoma is associated with a high rate of recurrence. Guidelines recommend rigorous, regular surveillance programs that are invasive and expensive. This study describes a noninvasive urine test with sufficient sensitivity to rule out recurrent urothelial carcinoma, thereby reducing invasive diagnostic evaluations without compromising patient care. METHODS AND MATERIALS: A total of 1,036 urine samples were prospectively collected from 763 patients undergoing routine surveillance for recurrent urothelial carcinoma of the bladder. The purpose was to develop and validate a test with combined high sensitivity and high negative predictive value. Cxbladder Monitor combines gene expression, clinical and patient data, and it is designed to rule out the presence of recurrent urothelial carcinoma. RESULTS: Cxbladder Monitor showed an internally validated sensitivity of 0.93 with a negative predictive value of 0.97 and a test negative rate of 0.34. Sensitivity was 0.95 for recurrent disease with a high risk of progression (all high grade disease and low grade, stage T1 or greater disease) compared with 0.86 for low grade Ta disease. Subgroup analyses indicated that diagnostic performance was not significantly different in different age groups, or by gender or tumor stage. Sensitivity was not affected by adjuvant bacillus Calmette-Guérin treatment within the last 6 months. False-negative findings were reported in fewer than 1.5% of all samples collected. CONCLUSIONS: The Cxbladder Monitor test offers combined high sensitivity and high negative predictive value to rule out urothelial carcinoma. This test has clinical utility as a confirmatory negative adjunct to cystoscopy, potentially justifying the postponement/avoidance of cystoscopic investigations to monitor recurrence in patients.
Assuntos
Biomarcadores Tumorais/urina , Carcinoma de Células de Transição/urina , Recidiva Local de Neoplasia/urina , Neoplasias da Bexiga Urinária/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células de Transição/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Vigilância da População , Valor Preditivo dos Testes , Estudos Prospectivos , Neoplasias da Bexiga Urinária/genéticaRESUMO
BACKGROUND: Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. METHODS: DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. RESULTS: In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). CONCLUSIONS: Our genome-wide characterization of DNA methylation in colorectal cancer has identified 132 genes hypermethylated in 100% of CIMP-H samples. Three genes, EYA4, TLX1 and TFPI2 are hypermethylated in >90% of all tumour samples, regardless of CIMP subtype.
Assuntos
Adenocarcinoma Mucinoso/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Adenocarcinoma Mucinoso/patologia , Idoso , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Fenótipo , PrognósticoRESUMO
Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored.
Assuntos
Caderinas/genética , Mutação em Linhagem Germinativa , Heterozigoto , Neoplasias Gástricas/genética , Antígenos CD , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Análise Mutacional de DNA , Detecção Precoce de Câncer/métodos , Feminino , Aconselhamento Genético , Testes Genéticos/métodos , Humanos , Vigilância da População , Guias de Prática Clínica como Assunto , Gravidez , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/epidemiologiaRESUMO
BACKGROUND: E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). METHODS: To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. RESULTS: The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. CONCLUSIONS: Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling.
Assuntos
Mama/metabolismo , Caderinas/genética , Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal , Antígenos CD , Sequência de Bases , Mama/citologia , Caderinas/deficiência , Adesão Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Análise de Sequência de RNA , Deleção de SequênciaRESUMO
Background: Cxbladder® assays are reverse transcription-quantitative polymerase chain reaction (RT-qPCR) tests incorporating five genetic biomarkers (CDK1, MDK, IGFBP5, HOXA13, and CXCR2) to provide risk stratification for urothelial carcinoma (UC) in patients with hematuria or undergoing surveillance for recurrent disease. This study evaluated the analytical validity of the Cxbladder Detect, Triage, and Monitor assays. Methods: Pre-specified acceptance criteria, including the assays' fundamental aspects (sample and reagent stability, RNA extraction quality, RT-qPCR linearity, and analytical sensitivity and specificity), accuracy and precision, and reproducibility between laboratories. Results: Cxbladder had an analytical sensitivity of 12.5-31.1 RNA copies/mL urine for the CDK1, MDK, IGFBP5, and HOXA13 UC biomarkers and 68.9 RNA copies/mL for the inflammatory biomarker CXCR2. All the pre-specified analytical criteria were met. Cxbladder had diagnostic sensitivity, specificity, positive predictive value, and negative predictive values of 77%, 94%, 68%, and 96%, respectively, for Detect; 95%, 46%, 20%, and 98% for Triage; and 91%, 39%, 21%, and 96% for Monitor. Cxbladder had high analytical accuracy (≤10.63% inaccuracy across all biomarkers) and good reproducibility (>85% concordance between laboratories). Conclusions: Cxbladder accurately and reproducibly detects UC biomarker expression and can aid clinicians in risk stratification of hematuria patients or those undergoing surveillance for recurrent UC.
RESUMO
We introduce a proof-of-concept extended reality (XR) environment for discussing cancer, presenting genomic information from multiple tumour sites in the context of 3D tumour models generated from CT scans. This tool enhances multidisciplinary discussions. Clinicians and cancer researchers explored its use in oncology, sharing perspectives on XR's potential for use in molecular tumour boards, clinician-patient communication, and education. XR serves as a universal language, fostering collaborative decision-making in oncology.
RESUMO
BACKGROUND: Circulating tumour DNA (ctDNA) analysis promises to improve the clinical care of people with cancer, address health inequities and guide translational research. This observational cohort study used ctDNA to follow 29 patients with advanced-stage cutaneous melanoma through multiple cycles of immunotherapy. METHOD: A melanoma-specific ctDNA next-generation sequencing (NGS) panel, droplet digital polymerase chain reaction (ddPCR) and mass spectrometry analysis were used to identify ctDNA mutations in longitudinal blood plasma samples from Aotearoa New Zealand (NZ) patients receiving immunotherapy for melanoma. These technologies were used in conjunction to identify the breadth and complexity of tumour genomic information that ctDNA analysis can reliably report. RESULTS: During the course of immunotherapy treatment, a high level of dynamic mutational complexity was identified in blood plasma, including multiple BRAF mutations in the same patient, clinically relevant BRAF mutations emerging through therapy and co-occurring sub-clonal BRAF and NRAS mutations. The technical validity of this ctDNA analysis was supported by high sample analysis-reanalysis concordance, as well as concordance between different ctDNA measurement technologies. In addition, we observed > 90% concordance in the detection of ctDNA when using cell-stabilising collection tubes followed by 7-day delayed processing, compared with standard EDTA blood collection protocols with rapid processing. We also found that the undetectability of ctDNA at a proportion of treatment cycles was associated with durable clinical benefit (DCB). CONCLUSION: We found that multiple ctDNA processing and analysis methods consistently identified complex longitudinal patterns of clinically relevant mutations, adding support for expanded clinical trials of this technology in a variety of oncology settings.
Assuntos
DNA Tumoral Circulante , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , DNA Tumoral Circulante/genética , Proteínas Proto-Oncogênicas B-raf/genética , DNA de Neoplasias , Mutação , Imunoterapia , Melanoma Maligno CutâneoRESUMO
PURPOSE: We investigated whether the RNA assay uRNA® and its derivative Cxbladder® have greater sensitivity for the detection of bladder cancer than cytology, NMP22™ BladderChek™ and NMP22™ ELISA, and whether they are useful in risk stratification. MATERIALS AND METHODS: A total of 485 patients presenting with gross hematuria but without a history of urothelial cancer were recruited prospectively from 11 urology clinics in Australasia. Voided urine samples were obtained before cystoscopy. The sensitivity and specificity of the RNA tests were compared to cytology and the NMP22 assays using cystoscopy as the reference. The ability of Cxbladder to distinguish between low grade, stage Ta urothelial carcinoma and more advanced urothelial carcinoma was also determined. RESULTS: uRNA detected 41 of 66 urothelial carcinoma cases (62.1% sensitivity, 95% CI 49.3-73.8) compared with NMP22 ELISA (50.0%, 95% CI 37.4-62.6), BladderChek (37.9%, 95% CI 26.2-50.7) and cytology (56.1%, 95% CI 43.8-68.3). Cxbladder, which was developed on the study data, detected 82%, including 97% of the high grade tumors and 100% of tumors stage 1 or greater. The cutoffs for uRNA and Cxbladder were prespecified to give a specificity of 85%. The specificity of cytology was 94.5% (95% CI 91.9-96.5), NMP22 ELISA 88.0%, (95% CI 84.6-91.0) and BladderChek 96.4% (95% CI 94.2-98.0). Cxbladder distinguished between low grade Ta tumors and other detected urothelial carcinoma with a sensitivity of 91% and a specificity of 90%. CONCLUSIONS: uRNA and Cxbladder showed improved sensitivity for the detection of urothelial carcinoma compared to the NMP22 assays. Stratification with Cxbladder provides a potential method to prioritize patients for the management of waiting lists.
Assuntos
Biomarcadores Tumorais/urina , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/urina , Hematúria/urina , RNA/urina , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Idoso , Carcinoma de Células de Transição/complicações , Carcinoma de Células de Transição/genética , Feminino , Hematúria/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Estudos Prospectivos , Medição de Risco/métodos , Sensibilidade e Especificidade , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/genética , Urina/citologiaRESUMO
The CDH1 gene, encoding the cell adhesion protein E-cadherin, is one of the most frequently mutated genes in gastric cancer and inactivating germline CDH1 mutations are responsible for the cancer syndrome hereditary diffuse gastric cancer (HDGC). CDH1-deficient gastric cancers exhibit high AKT serine/threonine kinase 3 (AKT3) expression, but specific drugs against this AKT isoform are not available. We therefore used two publicly available datasets to identify AKT3-associated genes which could be used to indirectly target AKT3. Reactome analysis identified an enrichment of extracellular matrix remodelling genes in AKT3-high gastric cancers. Of the 51 genes that were significantly correlated with AKT3 (but not AKT1), discoidin domain receptor tyrosine kinase 2 (DDR2) showed the strongest positive association. Treatment of isogenic human cells and mouse gastric and mammary organoids with dasatinib, a small molecule inhibitor of multiple kinases including SRC, BCR-ABL and DDR2, preferentially slowed the growth and induced apoptosis of E-cadherin-deficient cells. Dasatinib treatment also preferentially slowed the growth of gastric and mammary organoids harbouring both Cdh1 and Tp53 mutations. In organoid models, dasatinib treatment was associated with decreased phosphorylation of total AKT, with a stronger effect seen in Cdh1-deficient organoids. Treatment with combinations of dasatinib and an inhibitor of AKT, MK2206, enhanced the effect of dasatinib in breast MCF10A cells. In conclusion, targeting the DDR2-SRC-AKT3 axis with dasatinib represents a promising approach for the chemoprevention and chemotherapy of gastric and breast cancers lacking E-cadherin.
RESUMO
25-30% of families fulfilling the criteria for hereditary diffuse gastric cancer have germline mutations of the CDH1 (E-cadherin) gene. In light of new data and advancement of technologies, a multidisciplinary workshop was convened to discuss genetic testing, surgery, endoscopy and pathology reporting. The updated recommendations include broadening of CDH1 testing criteria such that: histological confirmation of diffuse gastric criteria is only required for one family member; inclusion of individuals with diffuse gastric cancer before the age of 40 years without a family history; and inclusion of individuals and families with diagnoses of both diffuse gastric cancer (including one before the age of 50 years) and lobular breast cancer. Testing is considered appropriate from the age of consent following counselling and discussion with a multidisciplinary team. In addition to direct sequencing, large genomic rearrangements should be sought. Annual mammography and breast MRI from the age of 35 years is recommended for women due to the increased risk for lobular breast cancer. In mutation positive individuals prophylactic total gastrectomy at a centre of excellence should be strongly considered. Protocolised endoscopic surveillance in centres with endoscopists and pathologists experienced with these patients is recommended for: those opting not to have gastrectomy, those with mutations of undetermined significance, and in those families for whom no germline mutation is yet identified. The systematic histological study of prophylactic gastrectomies almost universally shows pre-invasive lesions including in situ signet ring carcinoma with pagetoid spread of signet ring cells. Expert histopathological confirmation of these early lesions is recommended.
Assuntos
Gerenciamento Clínico , Síndromes Neoplásicas Hereditárias , Guias de Prática Clínica como Assunto , Neoplasias Gástricas , Adulto , Algoritmos , Antígenos CD , Caderinas/genética , Bases de Dados Factuais , Sistemas de Apoio a Decisões Clínicas , Árvores de Decisões , Diagnóstico Diferencial , Endoscopia Gastrointestinal , Epitélio , Feminino , Mucosa Gástrica , Aconselhamento Genético , Histocitoquímica , Humanos , Masculino , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/prevenção & controle , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/prevenção & controleRESUMO
Germline inactivating variants of CDH1 are causative of hereditary diffuse gastric cancer (HDGC), a cancer syndrome characterized by an increased risk of both diffuse gastric cancer and lobular breast cancer. Because loss of function mutations are difficult to target therapeutically, we have taken a synthetic lethal approach to identify targetable vulnerabilities in CDH1-null cells. We have previously observed that CDH1-null MCF10A cells exhibit a reduced rate of endocytosis relative to wildtype MCF10A cells. To determine whether this deficiency is associated with wider vulnerabilities in vesicle trafficking, we screened isogenic MCF10A cell lines with known inhibitors of autophagy, endocytosis, and sphingolipid metabolism. Relative to wildtype MCF10A cells, CDH1-/- MCF10A cells showed significantly greater sensitivity to several drugs targeting these processes, including the autophagy inhibitor chloroquine, the endocytosis inhibitors chlorpromazine and PP1, and the sphingosine kinase 1 inhibitor PF-543. Synthetic lethality was confirmed in both gastric and mammary organoid models of CDH1 loss, derived from CD44-Cre/Cdh1fl/fl/tdTomato mice. Collectively, these results suggest that both sphingolipid metabolism and vesicle trafficking represent previously unrecognised druggable vulnerabilities in CDH1-null cells and may lead to the development of new therapies for HDGC.
RESUMO
Inactivating germline mutations in the CDH1 gene (encoding the E-cadherin protein) are the genetic hallmark of hereditary diffuse gastric cancer (HDGC), and somatic CDH1 mutations are an early event in the development of sporadic diffuse gastric cancer (DGC) and lobular breast cancer (LBC). In this study, histone deacetylase (HDAC) inhibitors were tested for their ability to preferentially inhibit the growth of human cell lines (MCF10A and NCI-N87) and murine organoids lacking CDH1 expression. CDH1-/- breast and gastric cells were more sensitive to the pan-HDAC inhibitors entinostat, pracinostat, mocetinostat and vorinostat than wild-type cells, with an elevated growth inhibition that was, in part, attributable to increased apoptosis. CDH1-null cells were also sensitive to more class-specific HDAC inhibitors, but compared to the pan-inhibitors, these effects were less robust to genetic background. Increased sensitivity to entinostat was also observed in gastric organoids with both Cdh1 and Tp53 deletions. However, the deletion of Tp53 largely abrogated the sensitivity of the Cdh1-null organoids to pracinostat and mocetinostat. Finally, entinostat enhanced Cdh1 expression in heterozygous Cdh1+/- murine organoids. In conclusion, entinostat is a promising drug for the chemoprevention and/or treatment of HDGC and may also be beneficial for the treatment of sporadic CDH1-deficient cancers.