Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37765835

RESUMO

BACKGROUND: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. This study aimed to evaluate the performance and utility of a new plastic scintillating optical fiber dosimeter for CBCT dosimetric quality assurance (QA) applications before a potential application in patient composite CBCT dosimetry. METHODS: The dosimeter, made of 1 mm diameter plastic fiber, was installed under a linear accelerator treatment table and linked to photodetectors. The fiber impact on the fluence and dose delivered was respectively assessed with an electronic portal imaging device (EPID) and EBT3 Gafchromic® film. The presence of artifacts was visually evaluated on kV images. The dosimeter performances were determined for various acquisition parameters by comparison with ionization chamber values. RESULTS: The maximum impact of the fiber on the fluence measured by the EPID was -1.2% for the 6 MV flattening filter-free beam. However, the fiber did not alter the film dose profile when measured for all the beams tested. The fiber was not visible at energies ≥ 80 kV and was merely visible on the CBCT images. When the rate of images per second or mA was changed, the maximum relative difference between the device and the ionization chamber CTDIs was <5%. Changing collimation led to a -7.2% maximum relative difference with an absolute dose difference that was insignificant (-0.3 mGy). Changing kV was associated with a -8.7% maximum relative difference, as published in the literature. CONCLUSIONS: The dosimeter may be a promising device for CBCT recurrent dosimetry quality control or dose optimization. According to these results, further developments are in progress in order to adapt the solution to the measurement of patient composite CBCT doses.


Assuntos
Artefatos , Fibras Ópticas , Humanos , Tomografia Computadorizada de Feixe Cônico , Emoções , Decoração de Interiores e Mobiliário
2.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904817

RESUMO

(1) Background: The IVIscan is a commercially available scintillating fiber detector designed for quality assurance and in vivo dosimetry in computed tomography (CT). In this work, we investigated the performance of the IVIscan scintillator and associated method in a wide range of beam width from three CT manufacturers and compared it to a CT chamber designed for Computed Tomography Dose Index (CTDI) measurements. (2) Methods: We measured weighted CTDI (CTDIw) with each detector in accordance with the requirements of regulatory tests and international recommendations for the minimum, maximum and the most used beam width in clinic and investigated the accuracy of the IVIscan system based on the assessment of the CTDIw deviation from the CT chamber. We also investigated the IVIscan accuracy for the whole range of the CT scans kV. (3) Results: We found excellent agreement between the IVIscan scintillator and the CT chamber for the whole range of beam widths and kV, especially for wide beams used on recent technology of CT scans. (4) Conclusions: These findings highlight that the IVIscan scintillator is a relevant detector for CT radiation dose assessments, and the method associated with calculating the CTDIw saves a significant amount of time and effort when performing tests, especially with regard to new CT technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA