Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(13): 12266-12277, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366625

RESUMO

In the semiconducting perovskite materials family, the cesium-lead-chloride compound (CsPbCl3) supports robust excitons characterized by a blue-shifted transition and the largest binding energy, thus presenting a high potential to achieve demanding solid-state room-temperature photonic or quantum devices. Here we study the fundamental emission properties of cubic-shaped colloidal CsPbCl3 nanocrystals (NCs), examining in particular individual NC responses using micro-photoluminescence in order to unveil the exciton fine structure (EFS) features. Within this work, NCs with average dimensions ⟨Lα⟩ ≈ 8 nm (α = x, y, z) are studied with a level of dispersity in their dimensions that allows disentangling the effects of size and shape anisotropy in the analysis. We find that most of the NCs exhibit an optical response under the form of a doublet with crossed polarized peaks and an average inter-bright-state splitting, ΔBB ≈ 1.53 meV, but triplets are also observed though being a minority. The origin of the EFS patterns is discussed in the frame of the electron-hole exchange model by taking into account the dielectric mismatch at the NC interface. The different features (large dispersity in the ΔBB values and occasional occurrence of triplets) are reconciled by incorporating a moderate degree of shape anisotropy, observed in the structural characterization, by preserving the relatively high degree of the NC lattice symmetry. The energy distance between the optically inactive state and the bright manifold, ΔBD, is also extracted from time-resolved photoluminescence measurements (ΔBD ≈ 10.7 meV), in good agreement with our theoretical predictions.

2.
Nat Commun ; 13(1): 5094, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042249

RESUMO

Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha's rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA