Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2017: 8786013, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28466065

RESUMO

This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L-1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C.

2.
Pathogens ; 12(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133324

RESUMO

Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.

3.
Environ Sci Pollut Res Int ; 29(31): 46487-46508, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35507227

RESUMO

Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a "point of care testing" (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.


Assuntos
COVID-19 , Praguicidas , Humanos , Imunoensaio/métodos , Pandemias , Testes Imediatos
4.
Mater Sci Eng C Mater Biol Appl ; 91: 853-858, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033320

RESUMO

The development of effective nanoparticle therapeutics has been hindered by their surface characteristics, such as hydrophobicity and charge. Therefore, the success of biomedical applications with nanoparticles is governed by the control of these characteristics. In this article, we report an efficient green capping method for gold nanoparticles (AuNPs) by a reduction with sodium citrate and capping with Virola oleifera (Vo), which is a green exudate rich in polyphenols and flavonoids. The Vo-capped AuNPs were characterized by UV, DLS, FTIR, Raman, TEM, DPPH, FRAP and their cytotoxicity was evaluated on the viability of Murine macrophage cell. The AuNPs had an average particle size of 15 nm and were stable over a long time, as indicated by their unchanged SPR and zeta potential values. These nanoparticles were assessed for their antioxidant potential using DPPH and FRAP and demonstrated the highest antioxidant activities and low cytotoxicity. We propose that the Virola oleifera-capped AuNPs have potential biomedical applications.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Myristicaceae/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Ouro/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Camundongos , Polifenóis/análise , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Appl Spectrosc ; 71(12): 2670-2680, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28714324

RESUMO

Gold nanoparticles (AuNP) exhibit particular plasmonic properties when stimulated by visible light, which makes them a promising tool to many applications in sensor technology and biomedical applications, especially when associated to sulfur-based compounds. Sulfur species form a great variety of self-assembled structures that cap AuNP and this interaction rules the optical and plasmonic properties of the system. Here, we report the behavior of citrate-stabilized gold nanospheres in two distinct sulfur colloidal solutions, namely, thiocyanate and sulfide ionic solutions. Citrate-capped gold nanospheres were characterized using ultraviolet-visible (UV-Vis) absorption, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). In the presence of sulfur species, we have observed the formation of NP clusters and chain-like structures, giving rise to surface-enhanced effects. Surface-enhanced Raman spectroscopy (SERS) pointed to a modification in citrate vibrational modes, which suggests substitution of citrate by either thiocyanate or sulfide ions with distinct dynamics, as showed by in situ fluorescence. Moreover, we report the emergence of surface-enhanced infrared absorption (SEIRA) effect, which corroborates SERS conclusions. Further, SEIRA shows a great potential as a tool for specification of sulfur compounds in colloidal solutions, which is particularly useful when dealing with sensor technology.

6.
Nanoscale Res Lett ; 11(1): 465, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757946

RESUMO

The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles. Graphical Abstract The Virola oleifera reduction method for the synthesis of gold nanoparticles (AuNP's).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA