Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
New Phytol ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300950

RESUMO

Some Bradyrhizobium strains nodulate certain Aeschynomene species independently of Nod factors, but thanks to their type III secretion system (T3SS). While different T3 effectors triggering nodulation (ErnA and Sup3) have been identified, the plant signalling pathways they activate remain unknown. Here, we explored the intraspecies variability in T3SS-triggered nodulation within Aeschynomene evenia and investigated transcriptomic responses that occur during this symbiosis. Furthermore, Bradyrhizobium strains having different effector sets were tested on A. evenia mutants altered in various symbiotic signalling genes. We identified the A. evenia accession N21/PI 225551 as appropriate for deciphering the T3SS-dependent process. Comparative transcriptomic analysis of A. evenia N21 roots inoculated with ORS3257 strain and its ∆ernA mutant revealed genes differentially expressed, including some involved in plant defences and auxin signalling. In the other A. evenia accession N76, all tested strains nodulated the AeCRK mutant but not the AeNIN and AeNSP2 mutants, indicating a differential requirement of these genes for T3SS-dependent nodulation. Furthermore, the effects of AePOLLUX, AeCCaMK and AeCYCLOPS mutations differed between the strains. Notably, ORS86 nodulated these three mutant lines and required for this both ErnA and Sup3. Taken together, these results shed light on how the T3SS-dependent nodulation process is achieved in legumes.

2.
Plant Physiol ; 190(2): 1400-1417, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35876558

RESUMO

Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.


Assuntos
Fabaceae , Rhizobium , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Cisteína/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética
3.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591240

RESUMO

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Assuntos
Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Organogênese Vegetal/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Bradyrhizobium/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Organogênese Vegetal/genética , Raízes de Plantas/metabolismo , Pseudomonas fluorescens/genética , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
4.
Mol Plant Microbe Interact ; 34(1): 88-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33226302

RESUMO

Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Bradyrhizobium , Fabaceae , Espaço Intracelular , Proteínas de Bactérias/genética , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Fabaceae/microbiologia , Espaço Intracelular/microbiologia , Simbiose/genética
5.
Chembiochem ; 22(1): 147-150, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32965769

RESUMO

Acetobacter pasteurianus, a member of the Alphaproteobacteria, is an acetic acid-producing bacterium present on sugar-rich substrates such as such as fruits, flowers and vegetables and traditionally used in the production of fermented food. The preferred living habitat associated with acid conditions makes the structure of the bacterial cell wall interesting to study, due to expected uncommon features. We have used a combination of chemical, analytical and NMR spectroscopy approaches to define the complete structure of the core oligosaccharide from A. pasteurianus CIP103108 LPS. Interestingly, the core oligosaccharide displays a high concentration of negatively charged groups, structural features that might contribute to reinforcing the bacterial membrane.


Assuntos
Acetobacter/química , Lipopolissacarídeos/química , Acetobacter/metabolismo , Configuração de Carboidratos , Lipopolissacarídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular
6.
Environ Microbiol ; 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921018

RESUMO

To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E > U and S > U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

7.
Chemistry ; 23(15): 3637-3647, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28004420

RESUMO

The search for novel lipid A analogues from any biological source that can act as antagonists, displaying inhibitory activity towards the production of pro-inflammatory cytokines, or as immunomodulators in mammals, is a very topical issue. To this aim, the structure and immunological properties of the lipopolysaccharide lipid A from the purple nonsulfur bacterium Rhodopseudomonas palustris strain BisA53 have been determined. This lipid A displays a unique structural feature, with a non-phosphorylated skeleton made up of the tetrasaccharide Manp-α-(1→4)-GlcpN3N-ß-1→6-GlcpN3N-α-(1→1)-α-GalpA, and four primary amide-linked 14:0(3-OH) and, as secondary O-acyl substituents, a 16:0 and the very long-chain fatty acid 26:0(25-OAc), appended on the GlcpN3N units. This lipid A architecture is definitely rare, so far identified only in the genus Bradyrhizobium. Immunological tests on both murine bone-marrow-derived and human monocyte-derived macrophages revealed an extremely low immunostimulant capability of this LPS lipid A.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Lipídeo A/química , Lipídeo A/farmacologia , Rodopseudomonas/química , Animais , Células Cultivadas , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Mol Plant Microbe Interact ; 29(6): 447-57, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26959836

RESUMO

In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Peptidoglicano/metabolismo , Simbiose/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Mutação , Fotossíntese
9.
New Phytol ; 211(3): 1077-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27061605

RESUMO

The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation.


Assuntos
Organismos Aquáticos/genética , Evolução Biológica , Fabaceae/genética , Poliploidia , Cruzamento , Flores/anatomia & histologia , Duplicação Gênica , Genoma de Planta , Hibridização Genética , Cariótipo , Filogenia , Caules de Planta/fisiologia , Especificidade da Espécie , Fatores de Tempo , Transcriptoma/genética
10.
Plant Physiol ; 169(4): 2654-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446590

RESUMO

Nitrogen fixation in the legume-rhizobium symbiosis is a crucial area of research for more sustainable agriculture. Our knowledge of the plant cascade in response to the perception of bacterial Nod factors has increased in recent years. However, the discovery that Nod factors are not involved in the Aeschynomene-Bradyrhizobium spp. interaction suggests that alternative molecular dialogues may exist in the legume family. We evaluated the conservation of the signaling pathway common to other endosymbioses using three candidate genes: Ca(2+)/Calmodulin-Dependent Kinase (CCaMK), which plays a central role in cross signaling between nodule organogenesis and infection processes; and Symbiosis Receptor Kinase (SYMRK) and Histidine Kinase1 (HK1), which act upstream and downstream of CCaMK, respectively. We showed that CCaMK, SYMRK, and HK1 are required for efficient nodulation in Aeschynomene evenia. Our results demonstrate that CCaMK and SYMRK are recruited in Nod factor-independent symbiosis and, hence, may be conserved in all vascular plant endosymbioses described so far.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Fabaceae/fisiologia , Nodulação/fisiologia , Simbiose/fisiologia , Sequência de Aminoácidos , Bradyrhizobium/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/classificação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Histidina Quinase , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
11.
Plant Physiol ; 169(2): 1254-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286718

RESUMO

Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp., the bacteroids are kept under control by an arsenal of nodule-specific cysteine-rich (NCR) peptides, which induce the bacteria in an irreversible, strongly elongated, and polyploid state. Here, we show that in Aeschynomene spp. legumes belonging to the more ancient Dalbergioid lineage, bacteroids are elongated or spherical depending on the Aeschynomene spp. and that these bacteroids are terminally differentiated and polyploid, similar to bacteroids in IRLC legumes. Transcriptome, in situ hybridization, and proteome analyses demonstrated that the symbiotic cells in the Aeschynomene spp. nodules produce a large diversity of NCR-like peptides, which are transported to the bacteroids. Blocking NCR transport by RNA interference-mediated inactivation of the secretory pathway inhibits bacteroid differentiation. Together, our results support the view that bacteroid differentiation in the Dalbergioid clade, which likely evolved independently from the bacteroid differentiation in the IRLC clade, is based on very similar mechanisms used by IRLC legumes.


Assuntos
Evolução Biológica , Fabaceae/fisiologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia , Sequência de Aminoácidos , Bradyrhizobium/fisiologia , Cisteína/química , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Nódulos Radiculares de Plantas/fisiologia
12.
PLoS One ; 19(4): e0297547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625963

RESUMO

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 µM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 µM) and BAP (2,2 µM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.


Assuntos
Fabaceae , Fabaceae/genética , Fabaceae/microbiologia , Agrobacterium tumefaciens/genética , Simbiose/genética , Fenótipo , Verduras/genética , Transformação Genética , Plantas Geneticamente Modificadas
13.
Appl Environ Microbiol ; 79(7): 2459-62, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354704

RESUMO

The ability of photosynthetic Bradyrhizobium strains ORS285 and ORS278 to nodulate soybeans was investigated. While the nod gene-deficient ORS278 strain induced bumps only on soybean roots, the nod gene-containing ORS285 strain formed nitrogen-fixing nodules. However, symbiotic efficiencies differed drastically depending on both the soybean genotype used and the culture conditions tested.


Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/metabolismo , Glycine max/microbiologia , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Fotossíntese , Glycine max/crescimento & desenvolvimento
14.
Microbiol Spectr ; : e0194723, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681944

RESUMO

The functional significance of rpoN genes that encode two sigma factors in the Bradyrhizobium sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with Aeschynomene americana. rpoN mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of rpoN mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy. FTIR analysis of the CSP revealed the absence of specific components in the rpoN mutants, including lipids, carboxylic groups, polysaccharide-pyranose rings, and ß-galactopyranosyl residues. Nodules formed by DOA9WT exhibited a uniform distribution of lipids, proteins, and carbohydrates; mutant strains, particularly DOA9∆rpoNp:ΩrpoNc, exhibited decreased distribution uniformity and a lower concentration of C=O groups. Furthermore, Fe K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses revealed deficiencies in the nitrogenase enzyme in the nodules of DOA9∆rpoNc and DOA9∆rpoNp:ΩrpoNc mutants; nodules from DOA9WT and DOA9∆rpoNp exhibited both leghemoglobin and the nitrogenase enzyme. IMPORTANCE This work provides valuable insights into how two rpoN genes affect the composition of cellular surface polysaccharides (CSPs) in Bradyrhizobium sp., which subsequently dictates root nodule chemical characteristics and nitrogenase production. We used advanced synchrotron methods, including synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy (XAS), for the first time in this field to analyze CSP components and reveal the biochemical changes occurring within nodules. These cutting-edge techniques confer significant advantages by providing detailed molecular information, enabling the identification of specific functional groups, chemical bonds, and biomolecule changes. This research not only contributes to our understanding of plant-microbe interactions but also establishes a foundation for future investigations and potential applications in this field. The combined use of the synchrotron-based FTIR and XAS techniques represents a significant advancement in facilitating a comprehensive exploration of bacterial CSPs and their implications in plant-microbe interactions.

15.
J Genomics ; 11: 52-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915957

RESUMO

A new Bradyrhizobium vignae strain called ISRA400 was isolated from groundnut (Arachis hypogaea L.) root nodules obtained by trapping the bacteria from soil samples collected in the Senegalese groundnut basin. In this study, we present the draft genome sequence of this strain ISRA400, which spans approximatively 7.9 Mbp and exhibits a G+C content of 63.4%. The genome analysis revealed the presence of 48 tRNA genes and one rRNA operon (16S, 23S, and 5S). The nodulation test revealed that this strain ISRA400 significantly improves the nodulation parameters and chlorophyll content of the Arachis hypogaea variety Fleur11. These findings suggest the potential of Bradyrhizobium vignae strain ISRA400 as an effective symbiotic partner for improving the growth and productivity of groundnut crop.

16.
Genes (Basel) ; 14(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37107555

RESUMO

Peanuts (Arachis hypogaea L.) are an allotetraploid grain legume mainly cultivated by poor farmers in Africa, in degraded soil and with low input systems. Further understanding nodulation genetic mechanisms could be a relevant option to facilitate the improvement of yield and lift up soil without synthetic fertilizers. We used a subset of 83 chromosome segment substitution lines (CSSLs) derived from the cross between a wild synthetic tetraploid AiAd (Arachis ipaensis × Arachis duranensis)4× and the cultivated variety Fleur11, and evaluated them for traits related to BNF under shade-house conditions. Three treatments were tested: without nitrogen; with nitrogen; and without nitrogen, but with added0 Bradyrhizobium vignae strain ISRA400. The leaf chlorophyll content and total biomass were used as surrogate traits for BNF. We found significant variations for both traits specially linked to BNF, and four QTLs (quantitative trait loci) were consistently mapped. At all QTLs, the wild alleles decreased the value of the trait, indicating a negative effect on BNF. A detailed characterization of the lines carrying those QTLs in controlled conditions showed that the QTLs affected the nitrogen fixation efficiency, nodule colonization, and development. Our results provide new insights into peanut nodulation mechanisms and could be used to target BNF traits in peanut breeding programs.


Assuntos
Arachis , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Arachis/genética , Mapeamento Cromossômico/métodos , Fixação de Nitrogênio/genética , Melhoramento Vegetal
17.
JACS Au ; 3(3): 929-942, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006758

RESUMO

The ability of Methylobacterium extorquens to grow on methanol as the sole carbon and energy source has been the object of intense research activity. Unquestionably, the bacterial cell envelope serves as a defensive barrier against such an environmental stressor, with a decisive role played by the membrane lipidome, which is crucial for stress resistance. However, the chemistry and the function of the main constituent of the M. extorquens outer membrane, the lipopolysaccharide (LPS), is still undefined. Here, we show that M. extorquens produces a rough-type LPS with an uncommon, non-phosphorylated, and extensively O-methylated core oligosaccharide, densely substituted with negatively charged residues in the inner region, including novel monosaccharide derivatives such as O-methylated Kdo/Ko units. Lipid A is composed of a non-phosphorylated trisaccharide backbone with a distinctive, low acylation pattern; indeed, the sugar skeleton was decorated with three acyl moieties and a secondary very long chain fatty acid, in turn substituted by a 3-O-acetyl-butyrate residue. Spectroscopic, conformational, and biophysical analyses on M. extorquens LPS highlighted how structural and tridimensional features impact the molecular organization of the outer membrane. Furthermore, these chemical features also impacted and improved membrane resistance in the presence of methanol, thus regulating membrane ordering and dynamics.

18.
ISME J ; 17(9): 1416-1429, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355742

RESUMO

The establishment of the rhizobium-legume symbiosis is generally based on plant perception of Nod factors (NFs) synthesized by the bacteria. However, some Bradyrhizobium strains can nodulate certain legume species, such as Aeschynomene spp. or Glycine max, independently of NFs, and via two different processes that are distinguished by the necessity or not of a type III secretion system (T3SS). ErnA is the first known type III effector (T3E) triggering nodulation in Aeschynomene indica. In this study, a collection of 196 sequenced Bradyrhizobium strains was tested on A. indica. Only strains belonging to the photosynthetic supergroup can develop a NF-T3SS-independent symbiosis, while the ability to use a T3SS-dependent process is found in multiple supergroups. Of these, 14 strains lacking ernA were tested by mutagenesis to identify new T3Es triggering nodulation. We discovered a novel T3E, Sup3, a putative SUMO-protease without similarity to ErnA. Its mutation in Bradyrhizobium strains NAS96.2 and WSM1744 abolishes nodulation and its introduction in an ernA mutant of strain ORS3257 restores nodulation. Moreover, ectopic expression of sup3 in A. indica roots led to the formation of spontaneous nodules. We also report three other new T3Es, Ubi1, Ubi2 and Ubi3, which each contribute to the nodulation capacity of strain LMTR13. These T3Es have no homology to known proteins but share with ErnA three motifs necessary for ErnA activity. Together, our results highlight an unsuspected distribution and diversity of T3Es within the Bradyrhizobium genus that may contribute to their symbiotic efficiency by participating in triggering legume nodulation.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Fabaceae/fisiologia , Filogenia , Nodulação , Simbiose , Proteínas de Bactérias/genética
19.
Mol Plant Microbe Interact ; 25(7): 851-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22475377

RESUMO

Research on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp. are nodulated by photosynthetic Bradyrhizobium spp. that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the mechanisms of this Nod-independent process, we propose Aeschynomene evenia as a model legume because it presents all the characteristics required for genetic and molecular analysis. It is a short-perennial and autogamous species, with a diploid and relatively small genome (2n=20; 460 Mb/1C). A. evenia 'IRFL6945' is nodulated by the well-characterized photosynthetic Bradyrhizobium sp. strain ORS278 and is efficiently transformed by Agrobacterium rhizogenes. Aeschynomene evenia is genetically homozygous but polymorphic accessions were found. A manual hybridization procedure has been set up, allowing directed crosses. Therefore, it should be relatively straightforward to unravel the molecular determinants of the Nod-independent process in A. evenia. This should shed new light on the evolution of rhizobium-legume symbiosis and could have important agronomic implications.


Assuntos
Bradyrhizobium/genética , Fabaceae/genética , Genoma de Planta/genética , Simbiose/genética , Agrobacterium , Bradyrhizobium/fisiologia , DNA de Plantas/análise , DNA de Plantas/genética , Fabaceae/anatomia & histologia , Fabaceae/microbiologia , Fabaceae/fisiologia , Flores/anatomia & histologia , Marcadores Genéticos , Fixação de Nitrogênio/genética , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , Nodulação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Polinização , Polimorfismo Genético , Plântula/genética , Transformação Genética
20.
Protein Sci ; 31(6): e4327, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35634776

RESUMO

N-acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant-specific Lysin Motif Receptor-Like Kinases (LysM-RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo-chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM-RLK LYR3 (MtLYR3) as a specific LCO-binding protein. We also showed that the absence of LCO binding to LYR3 of the non-mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site-directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3-LysM3 by those of MtLYR3-LysM3 allowed the recovery of high-affinity LCO binding in experimental radioligand-binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern.


Assuntos
Quitina , Medicago truncatula , Quitina/metabolismo , Quitosana , Medicago truncatula/genética , Simulação de Acoplamento Molecular , Oligossacarídeos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA