RESUMO
BACKGROUND: Attractive targeted sugar baits (ATSBs) have the potential to significantly reduce infective female Anopheles mosquitoes in arid areas, such as in Northern Mali. Malaria is epidemic in the north due to the limited viability of Anopheles species in the desert climate. The goal of this study was to determine of the effect of ATSB on the number of older female An. gambiae and on the number of sporozoite-positive females in villages in northern Mali. METHODS: Villages were located in the north of Mali. In this study, 5677 ATSB stations were deployed, two on each home, in ten villages during late July and early August 2019. Ten villages served as controls. After a pre-treatment monitoring period in July, An. gambiae populations were monitored again from August to December using CDC-UV light traps, pyrethrum spray catches (PSC), and human landing catches (HLC). Mosquitoes were dissected to estimate their age, while ELISA detected sporozoite positivity. The monthly entomological inoculation rates (EIRs) were calculated for HLC indoors and outdoors. Data from villages were compared using t-tests, while bait station weighted density versus amount of collected females was checked with a Pearson's correlation. RESULTS: A total of 2703 female An. gambiae were caught from treated villages, 4582 from control villages, a 41.0% difference. Dissection of 1759 females showed that ATSB significantly reduced the number of older females. The proportion of older females in treated villages was 0.93% compared to 9.4% in control villages. ELISA analysis of 7285 females showed that bait stations reduced the number of sporozoite-positive females. The infective females in treated villages was 0.30% compared to 2.73% in the controls. The greater the density of bait stations deployed, the fewer the older, infective females (P < 0.05). EIRs were low in control villages except in months when An. gambiae populations were high. EIRs in ATSB placement villages remained zero. Significant reductions (P < 0.0001) in An. gambiae males were observed. CONCLUSIONS: Bait stations reduced all measures of vector populations in this study. In a low-transmission setting, ATSB has the potential to greatly reduce malaria.
Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Açúcares , Animais , Anopheles/fisiologia , Mali , Mosquitos Vetores/fisiologia , Feminino , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Malária/prevenção & controle , EsporozoítosRESUMO
BACKGROUND: Application methods of |Attractive Toxic Sugar Baits (ATSB) need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine, at the village level, the effect of different configurations of bait stations to (1) achieve < 25% Anopheles mosquito vector daily feeding rate for both males and females and (2) minimize the effect on non-target organisms. METHODS: Dye was added to Attractive Sugar Bait Stations (without toxin) to mark mosquitoes feeding on the baits, and CDC UV light traps were used to monitor for marked mosquitoes. An array of different traps were used to catch dye marked NTOs, indicating feeding on the ASB. Stations were hung on homes (1, 2, or 3 per home to optimize density) at different heights (1.0 m or 1.8 m above the ground). Eight villages were chosen as for the experiments. RESULTS: The use of one ASB station per house did not mark enough mosquitoes. Use of two and three stations per house gave feeding rates above the 25% goal. There was no statistical difference in the percentage of marked mosquitoes between two and three stations, however, the catches using two and three bait stations were both significantly higher than using one. There was no difference in An. gambiae s.l. feeding when stations were hung at 1.0 and 1.8 m. At 1.8 m stations sustained less accidental damage. ASB stations 1.8 m above ground were fed on by three of seven monitored insect orders. The monitored orders were: Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Neuroptera and Orthoptera. Using one or two stations significantly reduced percentage of bait-fed NTOs compared to three stations which had the highest feeding rates. Percentages were as follows: 6.84 ± 2.03% Brachycera followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) at 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (Hymenoptera). Feeding at 1.8 m only occurred when stations were damaged. CONCLUSIONS: The goal of marking quarter of the total Anopheles population per day was obtained using 2 bait stations at 1.8 m height above the ground. This configuration also had minimal effects on non-target insects.
Assuntos
Anopheles , Malária/prevenção & controle , Controle de Mosquitos , Plasmodium/efeitos dos fármacos , Açúcares , Animais , Feminino , Insetos/efeitos dos fármacos , Malária/transmissão , Masculino , Mali , Controle de Mosquitos/métodosRESUMO
BACKGROUND: The aim of this field trial was to evaluate the efficacy of attractive toxic sugar baits (ATSB) in Mali, where sustained malaria transmission occurs despite the use of long-lasting insecticidal nets (LLINs). ATSB bait stations were deployed in seven of 14 similar study villages, where LLINs were already in widespread use. The combined use of ATSB and LLINs was tested to see if it would substantially reduce parasite transmission by Anopheles gambiae sensu lato beyond use of LLINs alone. METHODS: A 2-day field experiment was conducted to determine the number of mosquitoes feeding on natural sugar versus those feeding on bait stations containing attractive sugar bait without toxin (ASB)-but with food dye. This was done each month in seven random villages from April to December 2016. In the following year, in seven treatment villages from May to December 2017, two ATSB bait stations containing the insecticide dinotefuran were placed on the outer walls of each building. Vector population density was evaluated monthly by CDC UV light traps, malaise traps, pyrethrum spray (PSCs) and human landing catches (HLCs). Female samples of the catch were tested for age by examination of the ovarioles in dissected ovaries and identification of Plasmodium falciparum sporozoite infection by ELISA. Entomological inoculation rates (EIR) were calculated, and reductions between treated and untreated villages were determined. RESULTS: In the 2-day experiment with ASB each month, there was a lower number of male and female mosquitoes feeding on the natural sugar sources than on the ASB. ATSB deployment reduced CDC-UV trap female catches in September, when catches were highest, were by 57.4% compared to catches in control sites. Similarly, malaise trap catches showed a 44.3% reduction of females in August and PSC catches of females were reduced by 48.7% in September. Reductions of females in HLCs were lower by 19.8% indoors and 26.3% outdoors in September. The high reduction seen in the rainy season was similar for males and reductions in population density for both males and females were > 70% during the dry season. Reductions of females with ≥ 3 gonotrophic cycles were recorded every month amounting to 97.1% in October and 100.0% in December. Reductions in monthly EIRs ranged from 77.76 to 100.00% indoors and 84.95% to 100.00% outdoors. The number of sporozoite infected females from traps was reduced by 97.83% at treated villages compared to controls. CONCLUSIONS: Attractive toxic sugar baits used against Anopheles mosquitoes in Mali drastically reduced the density of mosquitoes, the number of older females, the number of sporozoite infected females and the EIR demonstrating how ATSB significantly reduces malaria parasite transmission.
Assuntos
Anopheles , Guanidinas , Inseticidas , Controle de Mosquitos , Neonicotinoides , Nitrocompostos , Açúcares , Animais , Feminino , MaliRESUMO
The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.
Assuntos
Doença , Predisposição Genética para Doença/genética , Variação Genética/genética , Guias como Assunto , Reações Falso-Positivas , Genes/genética , Humanos , Disseminação de Informação , Editoração , Reprodutibilidade dos Testes , Projetos de Pesquisa , Pesquisa Translacional Biomédica/normasRESUMO
BACKGROUND: Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. METHODS: A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. RESULTS: In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. CONCLUSIONS: The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.
Assuntos
Anopheles/parasitologia , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/normas , Mosquitos Vetores/parasitologia , Animais , Anopheles/fisiologia , Simulação por Computador , Feminino , Humanos , Malária/transmissão , Modelos Biológicos , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologiaRESUMO
BACKGROUND: A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. METHODS: Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. RESULTS: Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. CONCLUSIONS: This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.
Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Secas , Espécies Introduzidas , Malária Falciparum/transmissão , Prosopis/química , Animais , Carboidratos/fisiologia , Dieta , Ecossistema , Comportamento Alimentar , Feminino , Malária Falciparum/parasitologia , Masculino , Mali , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Plasmodium falciparum/fisiologiaRESUMO
Attractive toxic sugar bait (ATSB) was applied to 5 different types of commonly found plants in landscaping of northeastern Florida. The ATSB applications were assessed for possible plant effects and preference against Aedes albopictus in semifield evaluations. Positive and negative controls consisted of plants sprayed with attractive sugar bait (no toxicant) and plants with nothing applied. Bioassays were conducted on stems with leaf clippings and on full plants to assess any difference in mosquito mortality on the different plants. Plants utilized in these evaluations were Indian hawthorne, Yaupon holly, Japanese privet, Loropetalum ruby, and podocarpus. In both assays, no significant difference was observed in the effect of ATSBs on adult female mosquitoes based on the type of plant. ATSB could be applied to common landscape plants for adult Ae. albopictus control.
Assuntos
Aedes , Controle de Insetos , Feromônios , Plantas , Açúcares , Animais , Planejamento Ambiental , Feminino , Florida , Controle de Insetos/métodos , Plantas/classificaçãoRESUMO
BACKGROUND: Knowledge of Anopheles resting habitats is needed to advance outdoor malaria vector control. This study presents a technique to map locations of resting habitats using high-resolution satellite imagery (world view 2) and probabilistic Dempster-Shafer (D-S) modelling, focused on a rural village in southern Mali, West Africa where field sampling was conducted to determine outdoor habitat preferences of Anopheles gambiae, the main vector in the study area. METHODS: A combination of supervised and manual image classification was used to derive an accurate land-cover map from the satellite image that provided classes (i.e., photosynthetically active vegetation, water bodies, wetlands, and buildings) suitable for habitat assessment. Linear fuzzy functions were applied to the different image classes to scale resting habitat covariates into a common data range (0-1) with fuzzy breakpoints parameterized experimentally through comparison with mosquito outdoor resting data. Fuzzy layers were entered into a Dempster-Shafer (D-S) weight-of-evidence model that produced pixel-based probability of resting habitat locations. RESULTS: The D-S model provided a highly detailed suitability map of resting locations. The results indicated a significant difference (p < 0.001) between D-S values at locations positive for An. gambiae and a set of randomly sampled points. Further, a negative binomial regression indicated that although the D-S estimates did not predict abundance (p > 0.05) subsequent analysis suggested that the D-S modelling approach may provide a reasonable estimate locations of low-to-medium An. gambiae density. These results suggest that that D-S modelling performed well in identifying presence points and specifically resting habitats. CONCLUSION: The use of a D-S modelling framework for predicting the outdoor resting habitat locations provided novel information on this little-known aspect of anopheline ecology. The technique used here may be applied more broadly at different geographic scales using Google Earth, Landsat or other remotely-sensed imagery to assess the malaria vector resting habitats where outdoor control measures can reduce the burden of the disease in Africa and elsewhere.
RESUMO
The project goal was to determine how a new vector control strategy that targets the sugar-feeding behavior of mosquitoes, attractive toxic sugar baits (ATSBs), can be used to more effectively control West Nile virus (WNV) vectors in the Coachella Valley, California. Three laboratory studies were conducted to determine the utility of this method for control against Culex quinquefasciatus and Culex tarsalis : 1) efficacy evaluations of 2 formulations of ATSB, microencapsulated garlic oil, and a combination of microencapsulated garlic oil and 1% boric acid; 2) choice assays to determine the attractiveness of ATSB with the microencapsulated garlic oil against attractive sugar baits (ASB; the attractant alone; without toxin) and a 10% sucrose solution; and 3) vegetation efficacy tests on 3 common plant species in the Coachella Valley, Atriplex lentiformis, Tamarix ramosissima , and Pluchea sericea. At 48 h the average mortality for Cx. quinquefasciatus was 91% after exposure to ATSB with microencapsulated garlic oil and 99% on ATSB garlic + 1% boric acid solution. Culex tarsalis averaged 86% and 91% mortality following the ATSB microencapsulated garlic oil solution and the ATSB garlic + 1% boric acid solution, respectively. Choice assays indicated that the there were differences in preferences between the solutions and between species. Both Cx. quinquefasciatus and Cx. tarsalis were found to prefer the ASB and ATSB solutions to the 10% sucrose solution. However, when comparing the ASB to ATSB, Cx. quinquefasciatus significantly preferred the ASB solution (t = 3.6, df = 25, P = 0.0008). There were no significant differences in the preference of Cx. tarsalis to feed on the ASB or ATSB solutions as indicated in the choice assays (t = 1.9, df = 25, P = 0.07). Assays indicated that applications of ATSB to the 3 common plants in the Coachella Valley resulted in high mortality in both Cx. quinquefasciatus and Cx. tarsalis. There were significant differences in the treatments compared to the control (F = 40.15, df1,2 = 4,72, P < 0.001) but no significant differences among the different plants and ATSB treatments (F = 1.06, df1,2 = 4,72, P = 0.38). Laboratory findings suggest that ATSB is effective for use against WNV vectors in California. Further evaluations are needed in the field to determine how the environment may impact ATSB applications to influence mosquito mortality and nontarget organisms in arid environments in the United States.
Assuntos
Quimiotaxia , Culex , Controle de Mosquitos , Açúcares , Animais , California , Feminino , Masculino , Controle de Mosquitos/métodos , Especificidade da EspécieRESUMO
BACKGROUND: Agent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour. METHODS: A spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared. RESULTS: When the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P < 0.01). Survival was greater when sugar sources were randomly distributed in the whole village compared to clustering around outdoor resting sites or houses. CONCLUSIONS: Increases in densities of sugar sources or outdoor resting sites significantly increase the survival and human biting rates of An. gambiae mosquitoes. Survival of An. gambiae is more supported by random distribution of sugar sources than clustering of sugar sources around resting sites or houses. Density and spatial distribution of natural sugar sources and outdoor resting sites modulate vector populations and human biting rates, and thus malaria parasite transmission.
Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Ecossistema , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Animais , Comportamento Alimentar , Feminino , Humanos , Masculino , Comportamento Sexual Animal , Análise de SobrevidaRESUMO
BACKGROUND: Attractive toxic sugar bait (ATSB) solutions containing any gut toxins can be either sprayed on plants or used in simple bait stations to attract and kill sugar-feeding female and male mosquitoes. This field study in Mali demonstrates the effect of ATSB bait stations inside houses as a vector control method that targets and kills endophilic African malaria vectors. METHODS: The studies were conducted in five villages located near the River Niger, Mali. Baseline village-wide assessments of densities for female and male Anopheles gambiae sensu lato were performed by pyrethrum spray collections (PSC) in ten houses in each of five villages. To determine the rate of mosquito feeding on bait stations, one bait station per house containing attractive sugar bait (ASB) (without toxin) plus a food dye marker, was set up in ten houses in each of the five villages. PSC collections were conducted on the following day and the percentage of female and male mosquitoes that had fed was determined by visual inspection for the dye marker. Then, a 50-day field trial was done. In an experimental village, one bait station containing ATSB (1% boric acid active ingredient) was placed per bedroom (58 bedrooms), and indoor densities of female and male An. gambiae s.l. were subsequently determined by PSC, and female mosquitoes were age graded. RESULTS: In the five villages, the percentages of An. gambiae s.l. feeding inside houses on the non-toxic bait stations ranged from 28.3 to 53.1% for females and 36.9 to 78.3% for males. Following ATSB indoor bait station presentation, there was a significant reduction, 90% in female and 93% in male populations, of An. gambiae s.l. at the experimental village. A 3.8-fold decrease in the proportion of females that had undergone four or more gonotrophic cycles was recorded at the experimental village, compared to a 1.2-fold increase at the control village. CONCLUSION: The field trial demonstrates that An. gambiae s.l. feed readily from ATSB bait stations situated indoors, leading to a substantial reduction in the proportion of older female mosquitoes. This study demonstrates that ATSB inside houses can achieve impressive malaria vector control in Africa.
Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Controle de Mosquitos/métodos , Animais , Carboidratos , Comportamento Alimentar , Feminino , Corantes de Alimentos , Masculino , MaliRESUMO
BACKGROUND: The development of insecticide resistance and the increased outdoor-biting behaviour of malaria vectors reduce the efficiency of indoor vector control methods. Attractive toxic sugar baits (ATSBs), a method targeting the sugar-feeding behaviours of vectors both indoors and outdoors, is a promising supplement to indoor tools. The number and configuration of these ATSB stations needed for malaria control in a community needs to be determined. METHODS: A hypothetical village, typical of those in sub-Saharan Africa, 600 × 600 m, consisting of houses, humans and essential resource requirements of Anopheles gambiae (sugar sources, outdoor resting sites, larval habitats) was simulated in a spatial individual-based model. Resource-rich and resource-poor environments were simulated separately. Eight types of configurations and different densities of ATSB stations were tested. Anopheles gambiae population size, human biting rate (HBR) and entomological inoculation rates (EIR) were compared between different ATSB configurations and densities. Each simulated scenario was run 50 times. RESULTS: Compared to the outcomes not altered by ATSB treatment in the control scenario, in resource-rich and resource-poor environments, respectively, the optimum ATSB treatment reduced female abundance by 98.22 and 91.80 %, reduced HBR by 99.52 and 98.15 %, and reduced EIR by 99.99 and 100 %. In resource-rich environments, n × n grid design, stations at sugar sources, resting sites, larval habitats, and random locations worked better in reducing vector population and HBRs than other configurations (P < 0.0001). However, there was no significant difference of EIR reductions between all ATSB configurations (P > 0.05). In resource-poor environments, there was no significant difference of female abundances, HBRs and EIRs between all ATSB configurations (P > 0.05). The optimum number of ATSB stations was about 25 for resource-rich environments and nine for resource-poor environments. CONCLUSIONS: ATSB treatment reduced An. gambiae population substantially and reduced EIR to near zero regardless of environmental resource availability. In resource-rich environments, dispersive configurations worked better in reducing vector population, and stations at or around houses worked better in preventing biting and parasite transmission. In resource-poor environments, all configurations worked similarly. Optimum numbers of bait stations should be adjusted according to seasonality when resource availability changes.
Assuntos
Anopheles , Controle de Mosquitos , África , Animais , Carboidratos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Humanos , Longevidade/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/prevenção & controle , Modelos Teóricos , Controle de Mosquitos/economia , Densidade DemográficaRESUMO
The effect of spraying a mixture of the insect growth regulator (IGR) pyriproxyfen (1 mg/liter) and either 1% boric acid sugar bait or eugenol sugar bait on croton petra plants (Codiaeum variegatum L.) was evaluated against the container-inhabiting mosquito, Aedes albopictus (Skuse). Treatments were applied to plants and evaluated against adult and larval Ae. albopictus in the laboratory through contact and wash off experiments, respectively. The control treatment lacked an active ingredient and were treated with an attractive sugar bait. The plants treated with attractive toxic sugar baits plus the IGR resulted in 60-100% mortality of laboratory-reared adult Ae. albopictus. The pyriproxyfen solutions collected from the plant wash experiment resulted in 80-100% emergence inhibition to the exposed third- and fourth-instar larvae, compared with the untreated control. Attractive toxic sugar baits mixed with the IGR not only provide effective control of adult mosquitoes, but also provide additional control of larval mosquitoes after being washed off from the treated plants.
Assuntos
Aedes , Hormônios Juvenis/administração & dosagem , Controle de Mosquitos/métodos , Piridinas/administração & dosagem , Animais , Ácidos Bóricos , Carboidratos , Eugenol , Euphorbiaceae , LarvaRESUMO
The purpose of this study was to test the efficacy of bait stations and foliar applications containing attractive toxic sugar baits (ATSB) and eugenol to control Aedes albopictus. At the same time, the potential impact of these control methods was evaluated on non-target organisms. The study was conducted at five tire sites in St. Augustine, Florida. A. albopictus populations were significantly reduced with ATSB-eugenol applications applied directly to non-flowering vegetation and as bait stations compared with non-attractive sugar baits and control. The application of ATSB made to non-flowering vegetation resulted in more significant reductions of mosquito populations compared to the application of ATSB presented in a bait station. Over 5.5% of the non-targets were stained in the flowering vegetation application site. However, when the attractive sugar bait application was made to non-flowering vegetation or presented in bait stations, the impact on non-target insects was very low for all non-target orders as only 0.6% of the individual insects were stained with the dye from the sugar solutions, respectively. There were no significant differences between the staining of mosquitoes collected in flowering vegetation (206/1000) or non-flowering vegetation (242/1000) sites during the non-target evaluation. Our field studies support the use of eugenol as an active ingredient for controlling the dengue vector A. albopictus when used as an ATSB toxin and demonstrates potential use in sub-tropical and tropical environments for dengue control.
Assuntos
Aedes , Controle de Mosquitos/métodos , Feromônios/química , Animais , Carboidratos/química , Eugenol/química , Eugenol/toxicidade , Florida , Feromônios/toxicidadeRESUMO
The further optimization of consumer safety through risk assessment of chemicals present in food will require adaptability and flexibility to utilize the accelerating developments in safety science and technology. New Approach Methodologies (NAMs) are gaining traction as a systematic approach to support informed decision making in chemical risk assessment. The vision is to be able to predict risk more accurately, rapidly and efficiently. The opportunity exists now to use these approaches which requires a strategy to translate the science into future regulatory implementation. Here we discuss new insights obtained from three recent workshops on how to translate the science into future regulatory implementation. To assist the UK in this endeavor, the Food Standards Agency (FSA) and the scientific advisory committee on chemical toxicity (COT) have been developing a roadmap. In addition, we discuss how these new insights fit into the bigger picture of the new chemical landscape for better consumer safety and the importance of international harmonization.
RESUMO
BACKGROUND: The effect of clothing colour on the biting rates of different vector mosquito species is not well understood. Studies under tropical field conditions are lacking. This study aimed to determine the influence of clothing colours on mosquito biting rates in rural and suburban settings in West Africa. METHODS: We performed a simulated field study in a suburban and a rural site in Mali using Mosquito-Magnet traps utilizing CO2 and other attractants, which were covered with black, white, and black/white striped textile sheets covers. These targets operated continuously for 10 consecutive days with bright nights (around full moon) and 10 consecutive days with dark nights (around new moon). Trapped mosquitoes were collected and catch rates counted hourly. Mosquitoes were morphologically identified to the species complex level (Anopheles gambiae s.l. and Culex pipiens s.l.) or species level (Aedes aegypti). A subset of Anopheles specimens were further identified by molecular methods. RESULTS: Under bright-night conditions, An. gambiae s.l. was significantly more attracted to black targets than to white and striped targets; during dark nights, no target preference was noted. During bright nights, Cx. pipiens s.l. was significantly more attracted to black and striped targets than to white targets; a similar trend was noted during dark nights (not significant). For day-active Ae. aegypti, striped targets were more attractive than the other targets and black were more attractive than white targets. CONCLUSIONS: The study firstly demonstrated that under field conditions in Mali, West Africa, mosquito catch rates were influenced by different clothing colours, depending on mosquito species and light conditions. Overall, light colours were least attractive to host-seeking mosquitoes. Using white or other light-coloured clothing can potentially reduce bite exposure and risk of disease transmission in endemic tropical regions.
Assuntos
Anopheles , Cor , Mosquitos Vetores , Animais , Mali , Mosquitos Vetores/fisiologia , Humanos , Anopheles/fisiologia , Culex/fisiologia , Vestuário , Têxteis , Mordeduras e Picadas de Insetos/prevenção & controle , Controle de Mosquitos/métodos , Comportamento Alimentar , Aedes/fisiologia , Culicidae/fisiologiaRESUMO
BACKGROUND: Current vector control strategies focus largely on indoor measures, such as long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS); however mosquitoes frequently feed on sugar sources outdoors, inviting the possibility of novel control strategies. Attractive toxic sugar baits (ATSB), either sprayed on vegetation or provided in outdoor bait stations, have been shown to significantly reduce mosquito densities in these settings. METHODS: Simple models of mosquito sugar-feeding behaviour were fitted to data from an ATSB field trial in Mali and used to estimate sugar-feeding rates and the potential of ATSB to control mosquito populations. The model and fitted parameters were then incorporated into a larger integrated vector management (IVM) model to assess the potential contribution of ATSB to future IVM programmes. RESULTS: In the Mali experimental setting, the model suggests that about half of female mosquitoes fed on ATSB solution per day, dying within several hours of ingesting the toxin. Using a model incorporating the number of gonotrophic cycles completed by female mosquitoes, a higher sugar-feeding rate was estimated for younger mosquitoes than for older mosquitoes. Extending this model to incorporate other vector control interventions suggests that an IVM programme based on both ATSB and LLINs may substantially reduce mosquito density and survival rates in this setting, thereby substantially reducing parasite transmission. This is predicted to exceed the impact of LLINs in combination with IRS provided ATSB feeding rates are 50% or more of Mali experimental levels. In addition, ATSB is predicted to be particularly effective against Anopheles arabiensis, which is relatively exophilic and therefore less affected by IRS and LLINs. CONCLUSIONS: These results suggest that high coverage with a combination of LLINs and ATSB could result in substantial reductions in malaria transmission in this setting. Further field studies of ATSB in other settings are needed to assess the potential of ATSB as a component in future IVM malaria control strategies.
Assuntos
Anopheles/fisiologia , Carboidratos/farmacologia , Entomologia/métodos , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Feromônios/farmacologia , Animais , Feminino , Malária/transmissão , Masculino , Mali , Modelos EstatísticosRESUMO
The international trade of lucky bamboo (Dracaena sanderiana [Asparagaceae]) is responsible for certain introductions of the exotic species Aedes albopictus (Skuse) in California and the Netherlands. Understanding the association of this species with lucky bamboo and other ornamental plants is important from a public health standpoint. The aim of this study was to investigate the importance of indoor ornamental plants as sugar sources for adult A. albopictus. If exposed to D. sanderiana, bromeliad (Guzmania spp. hybrid [Bromeliaceae]), Moses-in-the-cradle (Rhoeo spathacea [Commelinaceae]), 10 % sucrose solution, and a negative water control as the only nutrient source, adult female A. albopictus mean survival time was 12, 7, 6, 15, and 4 days, respectively. Mean survival times for adult males were not significantly different (P > 0.05) from the females and were 10, 7, 6, 14, and 3 days, respectively. Combined male and female survival times were not significantly different on lucky bamboo compared to survival times on a 10 % sucrose control. Based on our findings, A. albopictus can readily survive long enough to complete a gonotrophic cycle and potentially complete the extrinsic incubation period for many arboviruses when only provided access to lucky bamboo plants or possibly other common ornamentals. Vector control professionals should be aware of potential in-home infestations and public health concerns associated with mosquito breeding and plant tissue feeding on ornamental plants.
Assuntos
Aedes/fisiologia , Comportamento Alimentar , Plantas/parasitologia , Animais , Feminino , Inflorescência , Masculino , Análise de SobrevidaRESUMO
Attractive toxic sugar bait (active ingredient, 1% boric acid) was evaluated against Aedes albopictus Skuse populations in the laboratory, semi-field trials, and field trials in residential communities in St. Augustine, Florida. Laboratory evaluations of boric acid sugar baits applied to the plant Pentas lanceolata (Rubiaceae) demonstrated 100 and 92% mortality of A. albopictus at day 7 and 14, respectively. A semi-field study evaluating the bait application to the upperside or topside of leaves resulted in no significant difference on mortality (P>0.05). Overall combined top and bottom boric acid sugar bait application mortality at day 7 was 95% based on leaf bioassays. Field application of the boric acid sugar baits significantly (P<0.05) decreased adult A. albopictus populations up to day 21 post-treatment compared to the pre-treatment population numbers. A significant reduction in oviposition was demonstrated both at day 7 and 14 post-application (P=0.001) as monitored by ovitraps. Attractive toxic sugar bait application in tropical environments demonstrated efficacy, persistence, and feasibility in controlling A. albopictus populations.
Assuntos
Aedes/fisiologia , Ácidos Bóricos/farmacologia , Carboidratos/farmacologia , Inseticidas/farmacologia , Feromônios/farmacologia , Aedes/efeitos dos fármacos , Animais , Meio Ambiente , Feminino , Florida , Oviposição/efeitos dos fármacos , Folhas de Planta/química , Rubiaceae/química , Análise de Sobrevida , Clima TropicalRESUMO
The resting behavior of Aedes albopictus was evaluated by aspirating diurnal resting mosquitoes from common landscape vegetation in residential communities in St. Augustine, FL. Energy reserves of the resting mosquitoes were analyzed to determine if there was a correlation between mosquito resting habitat and energy accumulation. Six species of plants were selected and 9 collections of resting mosquitoes were aspirated from each plant using a modified John W. Hock backpack aspirator during June and July 2012. Eight mosquito species were collected, with Ae. albopictus representing 74% of the overall collection. The number of Ae. albopictus collected varied significantly with the species of vegetation. When comparing the vegetation and abundance of resting mosquitoes, the highest percentages of Ae. albopictus were collected resting on Ruellia brittoniana (Mexican petunia), Asplenium platyneuron (fern), Gibasis geniculate (Tahitian bridal veil), followed by Plumba goauriculata (plumbago), Setcreasea pallida (purple heart), and Hibiscus tiliaceus (hibiscus). There were significant differences in lipid and glycogen accumulation based on type of vegetation Ae. albopictus was found resting in. Resting mosquitoes' sugar reserves were not influenced by species of vegetation. However, there was an overall correlation between vegetation that serves as a resting habitat and energy reserve accumulation. The results of our study demonstrate the potential to target specific vegetation for control of diurnal resting mosquitoes.