Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 13(6): 2957-63, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23687903

RESUMO

Organic electronic materials have the potential to impact almost every aspect of modern life including how we access information, light our homes, and power personal electronics. Nevertheless, weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. Here, we demonstrate control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers. When utilized as the active layer of photovoltaic cells, block copolymer-based devices demonstrate efficient photoconversion well beyond devices composed of homopolymer blends. The 3% block copolymer device efficiencies are achieved without the use of a fullerene acceptor. X-ray scattering results reveal that the remarkable performance of block copolymer solar cells is due to self-assembly into mesoscale lamellar morphologies with primarily face-on crystallite orientations. Conjugated block copolymers thus provide a pathway to enhance performance in excitonic solar cells through control of donor-acceptor interfaces.

2.
Adv Mater ; 26(36): 6290-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25066024

RESUMO

The effectiveness of new a electron acceptor for organic solar cells is demonstrated. The acceptor is a homoleptic zinc(II) complex of 2,6-diphenylethynyl-1,3,7,9-tetraphenylazadipyrromethene. The high power-conversion efficiency obtained is attributed to the acceptor's 3D structure, which prevents crystallization and promotes a favourable nanoscale morphology, its high Voc , and its ability to contribute to light harvesting at 600-800 nm.

3.
ACS Macro Lett ; 2(3): 185-189, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35581879

RESUMO

Resonant soft X-ray scattering (RSOXS) is a complementary tool to existing reciprocal space methods, such as grazing-incidence small-angle X-ray scattering, for studying order formation in polymer thin films. In particular, RSOXS can exploit differences in absorption between multiple phases by tuning the X-ray energy to one or more resonance peaks of organic materials containing carbon, oxygen, nitrogen, or other atoms. Here, we have examined the structural evolution in poly(3-hexylthiophene-2,5-diyl)/[6,6]-phenyl-C61-butyric acid methyl ester mixtures by tuning X-rays to resonant absorption energies of carbon and oxygen. Our studies reveal that the energy dependence of RSOXS profiles marks the formation of multiple phases in the active layer of organic solar cells, which is consistent with elemental maps obtained through energy-filtered transmission electron microscopy.

4.
J Phys Chem B ; 117(49): 15866-74, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24073822

RESUMO

Enhancing the dielectric permittivity of organic semiconductors may open new opportunities to control charge generation and recombination dynamics in organic solar cells. The potential to tune the dielectric permittivity of organic semiconductors by doping them with redox inactive salts was explored using a combination of organic synthesis, electrical characterization, and time-resolved infrared spectroscopy. The addition of the salt, LiTFSI (lithium bis(trifluoro-methyl-sulfonyl)imide), to a conjugated polymer specifically designed to incorporate ions into its bulk phase increased the density of holes and enhanced the static dielectric permittivity of the polymer blend by more than an order of magnitude. The frequency and phase dependence of the real dielectric function demonstrates that the increase in dielectric permittivity resulted from dipolar motion of bound ion pairs or clusters of ions. Interestingly, the increases in the hole density and dielectric permittivity were associated with enhancement of the hole mobility by 2 orders of magnitude relative to the undoped polymer. The charge recombination lifetime also increased by an order of magnitude in the blend with a fullerene electron acceptor when ions were added to the polymer. The findings indicate that ion doping enables organic semiconductors with large increases in low frequency dielectric permittivity and that these changes result in improved charge transport and suppressed charge recombination on the microsecond time scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA