Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Radiol ; 64(5): 1985-1993, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36471581

RESUMO

BACKGROUND: The underlying mechanism of neurosyphilis was not fully understood. PURPOSE: To assess gray matter (GM) microstructure in patients with early-stage neurosyphilis without overt conventional magnetic resonance imaging (MRI) abnormality using voxel-based morphometry (VBM) and surface-based morphometry (SBM) analyses. MATERIAL AND METHODS: Three-dimensional high-resolution T1-weighted imaging data from 19 individuals with neurosyphilis and 19 healthy controls were analyzed. A battery of neuropsychological tests was performed before each MRI examination. The differences of GM volume and cerebral cortical morphological data between the two groups were compared. The correlations between MRI metrics and neuropsychology/laboratory tests in the patient group were investigated. RESULTS: Regional decreased GM volumes in patients with neurosyphilis were found in the left frontal cortices (Rolandic operculum, middle frontal, and precentral) and bilateral temporal/occipital cortices (bilateral middle temporal, left lingual, and right middle occipital) (P < 0.05, FDR correction). SBM analysis showed significant cortical thickness reduction in the right medial orbitofrontal lobe, and reduced gyrification index in the left insula in patients with neurosyphilis (P < 0.05, FDR correction). Additionally, in the patient group, the GM volume in the middle frontal gyrus, the cortical thickness of right medial orbitofrontal lobe, and the gyrification index in the left insula were negatively correlated to the number connection test-A scores. The gyrification index was also negatively correlated to cerebrospinal fluid white blood cell count. CONCLUSION: Early-stage neurosyphilis without conventional MRI abnormality presented regional GM volume reduction and cortical morphological changes, which might be related to cognitive impairment and intra-cranial infection. VBM and SBM analyses might be useful for understanding the underlying neural trait of neurosyphilis.


Assuntos
Lobo Frontal , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Projetos Piloto , Lobo Temporal , Imageamento por Ressonância Magnética/métodos , Encéfalo
2.
Chemistry ; 25(45): 10710-10717, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31115068

RESUMO

Lithium-sulfur (Li-S) batteries are considered to be one of the most promising energy storage systems owing to their high energy density and low cost. However, their wide application is still limited by the rapid capacity fading. Herein, polydopamine (PDA)-coated N-doped hierarchical porous carbon spheres (NPC@PDA) are reported as sulfur hosts for high-performance Li-S batteries. The NPC core with abundant and interconnected pores provides fast electron/ion transport pathways and strong trapping ability towards lithium polysulfide intermediates. The PDA shell could further suppress the loss of lithium polysulfide intermediates through polar-polar interactions. Benefiting from the dual function design, the NPC/S@PDA composite cathode exhibits an initial capacity of 1331 mAh g-1 and remains at 720 mAh g-1 after 200 cycles at 0.5 C. At the pouch cell level with a high sulfur mass loading, the NPC/S@PDA composite cathode still exhibits a high capacity of 1062 mAh g-1 at a current density of 0.4 mA cm-2 .

3.
Vis Comput Ind Biomed Art ; 6(1): 4, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847895

RESUMO

This study presents a robustness optimization method for rapid prototyping (RP) of functional artifacts based on visualized computing digital twins (VCDT). A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built, where thermal, structural, and multidisciplinary knowledge could be integrated for visualization. To implement visualized computing, the membership function of fuzzy decision-making was optimized using a genetic algorithm. Transient thermodynamic, structural statics, and flow field analyses were conducted, especially for glass fiber composite materials, which have the characteristics of high strength, corrosion resistance, temperature resistance, dimensional stability, and electrical insulation. An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP. Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution. A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT. Moreover, manufacturability was verified based on a thermal-solid coupled finite element analysis. The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.

4.
ACS Appl Mater Interfaces ; 10(44): 38101-38108, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360056

RESUMO

Organic electrode materials, with low-cost synthesis and environmental friendliness, have gained significant research interest in lithium-ion batteries (LIBs). Polydopamine (PDA), as a bioderived organic electrode material, exhibits a low capacity of ∼100 mAh g-1, greatly limiting the practical application in LIBs. In this work, we find that a simple heat treatment at 300 °C can endow PDA-derived material (PDA300) with superior electrochemical performance. The obtained PDA300 electrode exhibits an ultrahigh capacity of 977 mAh g-1 at 50 mA g-1. Further combining the PDA300 with highly conductive Ti3C2T x MXene, the obtained PDA300/Ti3C2T x composite is demonstrated by high capacity (1190 mAh g-1, 50 mA g-1), excellent rate capability (remaining 552 mAh g-1 at 5 A g-1), and good cycling stability (82% retaining after 1000 cycles). The outstanding lithium storage performance is highly associated with the superlithiation process of the unsaturated carbon-carbon bonds in the PDA derivative and the introduction of the highly conductive Ti3C2T x substrate with a unique two-dimensional nanostructure. This work will provide new opportunities for the expansion of high-performance organic anodes for LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA