Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
2.
Cell ; 155(6): 1216-9, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315093

RESUMO

Mouse models for cancer are revealing novel cancer-promoting roles for autophagy. Autophagy promotes tumor growth by suppressing the p53 response, maintaining mitochondrial function, sustaining metabolic homeostasis and survival in stress, and preventing diversion of tumor progression to benign oncocytomas.


Assuntos
Autofagia , Carcinogênese , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/metabolismo
3.
Genes Dev ; 33(3-4): 150-165, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692209

RESUMO

Loss of tumor suppressor liver kinase B1 (LKB1) promotes cancer cell proliferation but also leads to decreased metabolic plasticity in dealing with energy crises. Autophagy is a protective process involving self-cannibalization to maintain cellular energy homeostasis during nutrient deprivation. We developed a mouse model for Lkb1-deficient lung cancer with conditional deletion of essential autophagy gene Atg7 to test whether autophagy compensates for LKB1 loss for tumor cells to survive energy crises. We found that autophagy ablation was synthetically lethal during Lkb1-deficient lung tumorigenesis in both tumor initiation and tumor growth. We further found that autophagy deficiency causes defective intracellular recycling, which limits amino acids to support mitochondrial energy production in starved cancer cells and causes autophagy-deficient cells to be more dependent on fatty acid oxidation (FAO) for energy production, leading to reduced lipid reserve and energy crisis. Our findings strongly suggest that autophagy inhibition could be a strategy for treating LKB1-deficient lung tumors.


Assuntos
Autofagia , Carcinogênese/patologia , Proteínas de Transporte/genética , Metabolismo dos Lipídeos/fisiologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
4.
Nature ; 565(7737): E3, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523330

RESUMO

In this Letter, 'released' should have been 'regulated' in the sentence starting: 'Deletion of Atg5 in the host similarly regulated circulating arginine and suppressed tumorigenesis...' This has been corrected online.

5.
PLoS Genet ; 18(4): e1010138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404932

RESUMO

The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.


Assuntos
Autofagia , Mitocôndrias , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Encéfalo/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Homeostase/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução
6.
Nature ; 563(7732): 569-573, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429607

RESUMO

Autophagy captures intracellular components and delivers them to lysosomes, where they are degraded and recycled to sustain metabolism and to enable survival during starvation1-5. Acute, whole-body deletion of the essential autophagy gene Atg7 in adult mice causes a systemic metabolic defect that manifests as starvation intolerance and gradual loss of white adipose tissue, liver glycogen and muscle mass1. Cancer cells also benefit from autophagy. Deletion of essential autophagy genes impairs the metabolism, proliferation, survival and malignancy of spontaneous tumours in models of autochthonous cancer6,7. Acute, systemic deletion of Atg7 or acute, systemic expression of a dominant-negative ATG4b in mice induces greater regression of KRAS-driven cancers than does tumour-specific autophagy deletion, which suggests that host autophagy promotes tumour growth1,8. Here we show that host-specific deletion of Atg7 impairs the growth of multiple allografted tumours, although not all tumour lines were sensitive to host autophagy status. Loss of autophagy in the host was associated with a reduction in circulating arginine, and the sensitive tumour cell lines were arginine auxotrophs owing to the lack of expression of the enzyme argininosuccinate synthase 1. Serum proteomic analysis identified the arginine-degrading enzyme arginase I (ARG1) in the circulation of Atg7-deficient hosts, and in vivo arginine metabolic tracing demonstrated that serum arginine was degraded to ornithine. ARG1 is predominantly expressed in the liver and can be released from hepatocytes into the circulation. Liver-specific deletion of Atg7 produced circulating ARG1, and reduced both serum arginine and tumour growth. Deletion of Atg5 in the host similarly regulated [corrected] circulating arginine and suppressed tumorigenesis, which demonstrates that this phenotype is specific to autophagy function rather than to deletion of Atg7. Dietary supplementation of Atg7-deficient hosts with arginine partially restored levels of circulating arginine and tumour growth. Thus, defective autophagy in the host leads to the release of ARG1 from the liver and the degradation of circulating arginine, which is essential for tumour growth; this identifies a metabolic vulnerability of cancer.


Assuntos
Arginina/sangue , Autofagia , Neoplasias/sangue , Neoplasias/patologia , Aloenxertos , Animais , Arginase/sangue , Arginase/metabolismo , Arginina/administração & dosagem , Arginina/farmacologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/deficiência , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Suplementos Nutricionais , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias/genética , Ornitina/metabolismo
7.
Genes Dev ; 30(15): 1704-17, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516533

RESUMO

Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras-driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient (Atg7(-/-)) Kras-driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras-driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.


Assuntos
Autofagia , Neoplasias Pulmonares/metabolismo , Nucleotídeos/metabolismo , Proteínas ras/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Deleção de Genes , Variação Genética , Genoma Mitocondrial/genética , Glutamina/farmacologia , Neoplasias Pulmonares/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Nucleosídeos/farmacologia , Oxirredução
8.
Genes Dev ; 27(13): 1447-61, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824538

RESUMO

Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 (atg7) was deleted concurrently with K-ras(G12D) activation in mouse models for non-small-cell lung cancer (NSCLC). atg7-deficient tumors accumulated dysfunctional mitochondria and prematurely induced p53 and proliferative arrest, which reduced tumor burden that was partly relieved by p53 deletion. atg7 loss altered tumor fate from adenomas and carcinomas to oncocytomas-rare, predominantly benign tumors characterized by the accumulation of defective mitochondria. Surprisingly, lipid accumulation occurred in atg7-deficient tumors only when p53 was deleted. atg7- and p53-deficient tumor-derived cell lines (TDCLs) had compromised starvation survival and formed lipidic cysts instead of tumors, suggesting defective utilization of lipid stores. atg7 deficiency reduced fatty acid oxidation (FAO) and increased sensitivity to FAO inhibition, indicating that with p53 loss, Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. Thus, autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas. Moreover, cancers require autophagy for distinct roles in metabolism that are oncogene- and tumor suppressor gene-specific.


Assuntos
Adenoma Oxífilo/fisiopatologia , Autofagia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Genes ras/fisiologia , Metabolismo dos Lipídeos , Neoplasias Pulmonares/fisiopatologia , Animais , Linhagem Celular Tumoral , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Homeostase , Longevidade/genética , Camundongos , Mitocôndrias/patologia , Células Tumorais Cultivadas
9.
Genes Dev ; 25(5): 460-70, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317241

RESUMO

Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras(V12) or K-ras(V12) oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis. In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this "autophagy addiction" suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.


Assuntos
Autofagia/fisiologia , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Células HCT116 , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Inanição
10.
Artigo em Inglês | MEDLINE | ID: mdl-38253423

RESUMO

Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.


Assuntos
Autofagia , Neoplasias , Microambiente Tumoral , Humanos , Autofagia/fisiologia , Neoplasias/patologia , Neoplasias/imunologia , Animais
11.
Nat Commun ; 15(1): 5857, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997257

RESUMO

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.


Assuntos
Glucosefosfato Desidrogenase , Homeostase , Neoplasias Pulmonares , NADP , Oxirredução , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras) , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NADP/metabolismo , Camundongos , Humanos , Linhagem Celular Tumoral , Lipogênese/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Quinases Proteína-Quinases Ativadas por AMP/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Via de Pentose Fosfato/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Camundongos Knockout , Feminino , Mutação
12.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853873

RESUMO

Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA. In brief: High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival. Highlights: Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival.

13.
Oncogene ; 42(27): 2183-2194, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258742

RESUMO

The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Genes ras , Microambiente Tumoral/genética
14.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873106

RESUMO

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;p53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.

15.
Cell Death Dis ; 14(1): 61, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702816

RESUMO

LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ferroptose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Autofagia , Linhagem Celular Tumoral , Mutação
16.
Clin Transl Med ; 13(6): e1298, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37317665

RESUMO

BACKGROUND: Differentiated thyroid cancer (DTC) affects thousands of lives worldwide each year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) quality of life and might be unnecessary in indolent DTC cases. On the other hand, the lack of biomarkers indicating a potential metastatic thyroid cancer imposes an additional challenge to managing and treating patients with this disease. AIM: The presented clinical setting highlights the unmet need for a precise molecular diagnosis of DTC and potential metastatic disease, which should dictate appropriate therapy. MATERIALS AND METHODS: In this article, we present a differential multi-omics model approach, including metabolomics, genomics, and bioinformatic models, to distinguish normal glands from thyroid tumours. Additionally, we are proposing biomarkers that could indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. RESULTS: Normal and tumour thyroid tissue from DTC patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumour cells. The consistency of the DTC metabolic profile allowed us to build a bioinformatic classification model capable of clearly distinguishing normal from tumor thyroid tissues, which might help diagnose thyroid cancer. Moreover, based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intra-tumour heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. DISCUSSION: Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. CONCLUSIONS: Well-designed, prospective translational clinical trials will ultimately show the value of this integrated multi-omics approach and early diagnosis of DTC and potential metastatic PTC.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo/uso terapêutico , Estudos Prospectivos , Qualidade de Vida , Encurtamento do Telômero , Telômero , Recidiva Local de Neoplasia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética
17.
medRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945575

RESUMO

Differentiated thyroid cancer (DTC) affects thousands of lives worldwide every year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) the quality of life and might be unnecessary in indolent DTC cases. This clinical setting highlights the unmet need for a precise molecular diagnosis of DTC, which should dictate appropriate therapy. Here we propose a differential multi-omics model approach to distinguish normal gland from thyroid tumor and to indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. Based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intratumor heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. Specifically, normal and tumor thyroid tissues from these patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumor cells. Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. Well-designed, prospective translational clinical trials will ultimately show the value of this targeted molecular approach. TRANSLATIONAL RELEVANCE: In this article, we propose a new integrated metabolic, genomic, and cytopathologic methods to diagnose Differentiated Thyroid Cancer when the conventional methods failed. Moreover, we suggest metabolic and genomic markers to help predict high-risk Papillary Thyroid Cancer. Both might be important tools to avoid unnecessary surgery and/or radioiodine therapy that can worsen the quality of life of the patients more than living with an indolent Thyroid nodule.

18.
FEBS J ; 289(22): 7177-7198, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270851

RESUMO

Autophagy is a catabolic process that captures cellular waste and degrades them in the lysosome. The main functions of autophagy are quality control of cytosolic proteins and organelles, and intracellular recycling of nutrients in order to maintain cellular homeostasis. Autophagy is upregulated in many cancers to promote cell survival, proliferation, and metastasis. Both cell-autonomous autophagy (also known as tumor autophagy) and non-cell-autonomous autophagy (also known as host autophagy) support tumorigenesis through different mechanisms, including inhibition of p53 activation, sustaining redox homeostasis, maintenance of essential amino acids levels in order to support energy production and biosynthesis, and inhibition of antitumor immune responses. Therefore, autophagy may serve as a tumor-specific vulnerability and targeting autophagy could be a novel strategy in cancer treatment.


Assuntos
Autofagia , Neoplasias , Humanos , Carcinogênese/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias/patologia , Lisossomos/metabolismo
19.
Sci Rep ; 12(1): 13135, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908087

RESUMO

The imidazolium compound Ym155 was first reported to be a survivin inhibitor. Ym155 potently induces cell death of many types of cancer cells in preclinical studies. However, in phase II clinical trials Ym155 failed to demonstrate a significant benefit. Studies have suggested that the cytotoxic effects of Ym155 in cancer cells are not mediated by the inhibition of survivin. Understanding the mechanism by which Ym155 induces cell death would provide important insight how to improve its efficacy as a cancer therapeutic. We demonstrate a novel mechanism by which Ym155 induces cell death by localizing to the mitochondria causing mitochondrial dysfunction. Our studies suggest that Ym155 binds mitochondrial DNA leading to a decrease in oxidative phosphorylation, decrease in TCA cycle intermediates, and an increase in mitochondrial permeability. Furthermore, we show that mitochondrial stress induced by Ym155 and other mitochondrial inhibitors activates AMP-activated kinase leading to the downregulation to bone morphogenetic protein (BMP) signaling. We provide first evidence that Ym155 initiates cell death by disrupting mitochondrial function.


Assuntos
Antineoplásicos , Imidazóis/farmacologia , Neoplasias Pulmonares , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Antineoplásicos/farmacologia , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/metabolismo , Survivina/metabolismo
20.
Cell Death Dis ; 13(4): 370, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440095

RESUMO

LIF, a multifunctional cytokine, is frequently overexpressed in many types of solid tumors, including breast cancer, and plays an important role in promoting tumorigenesis. Currently, how LIF promotes tumorigenesis is not well-understood. Metabolic reprogramming is a hallmark of cancer cells and a key contributor to cancer progression. However, the role of LIF in cancer metabolic reprogramming is unclear. In this study, we found that LIF increases glucose uptake and drives glycolysis, contributing to breast tumorigenesis. Blocking glucose uptake largely abolishes the promoting effect of LIF on breast tumorigenesis. Mechanistically, LIF overexpression enhances glucose uptake via activating the AKT/GLUT1 axis to promote glycolysis. Blocking the AKT signaling by shRNA or its inhibitors greatly inhibits glycolysis driven by LIF and largely abolishes the promoting effect of LIF on breast tumorigenesis. These results demonstrate an important role of LIF overexpression in glucose metabolism reprogramming in breast cancers, which contributes to breast tumorigenesis. This study also reveals an important mechanism underlying metabolic reprogramming of breast cancers, and identifies LIF and its downstream signaling as potential therapeutic targets for breast cancers, especially those with LIF overexpression.


Assuntos
Neoplasias da Mama , Glucose , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Feminino , Glucose/metabolismo , Glicólise/genética , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA