Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257216

RESUMO

Defatted cottonseed meal (CSM), the residue of cottonseeds after oil extraction, is a major byproduct of the cotton industry. Converting CSM to biochar and utilizing the goods in agricultural and environmental applications may be a value-added, sustainable approach to recycling this byproduct. In this study, raw CSM was transformed into biochar via complete batch slow pyrolysis at 300, 350, 400, 450, 500, 550, and 600 °C. Thermochemical transformation of phosphorus (P) in CSM during pyrolysis was explored. Fractionation, lability, and potential bioavailability of total P (TP) in CSM-derived biochars were evaluated using sequential and batch chemical extraction techniques. The recovery of feed P in biochar was nearly 100% at ≤550 °C and was reduced to <88% at 600 °C. During pyrolysis, the organic P (OP) molecules predominant in CSM were transformed into inorganic P (IP) forms, first to polyphosphates and subsequently to orthophosphates as promoted by a higher pyrolysis temperature. Conversion to biochar greatly reduced the mobility, lability, and bioavailability of TP in CSM. The biochar TP consisted of 9.3-17.9% of readily labile (water-extractable) P, 10.3-24.1% of generally labile (sequentially NaHCO3-extractable) P, 0.5-2.8% of moderately labile (sequentially NaOH-extractable) P, 17.0-53.8% of low labile (sequentially HCl-extractable) P, and 17.8-47.5% of residual (unextractable) P. Mehlich-3 and 1 M HCl were effective batch extraction reagents for estimating the "readily to mid-term" available and the "overall" available P pools of CSM-derived biochars, respectively. The biochar generated at 450 °C exhibited the lowest proportions of readily labile P and residual P compounds, suggesting 450 °C as the optimal pyrolysis temperature to convert CSM to biochar with maximal P bioavailability and minimal runoff risk.


Assuntos
Carvão Vegetal , Óleo de Sementes de Algodão , Fósforo , Humanos , Temperatura , Pirólise , Febre , Polifosfatos
2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958827

RESUMO

Nucleosomes not only serve as the basic building blocks for eukaryotic chromatin but also regulate many biological processes, such as DNA replication, repair, and recombination. To modulate gene expression in vivo, the histone variant H2A.Z can be dynamically incorporated into the nucleosome. However, the assembly dynamics of H2A.Z-containing nucleosomes remain elusive. Here, we demonstrate that our previous chemical kinetic model for nucleosome assembly can be extended to H2A.Z-containing nucleosome assembly processes. The efficiency of H2A.Z-containing nucleosome assembly, like that of canonical nucleosome assembly, was also positively correlated with the total histone octamer concentration, reaction rate constant, and reaction time. We expanded the kinetic model to represent the competitive dynamics of H2A and H2A.Z in nucleosome assembly, thus providing a novel method through which to assess the competitive ability of histones to assemble nucleosomes. Based on this model, we confirmed that histone H2A has a higher competitive ability to assemble nucleosomes in vitro than histone H2A.Z. Our competitive kinetic model and experimental results also confirmed that in vitro H2A.Z-containing nucleosome assembly is governed by chemical kinetic principles.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Cromatina
3.
J Environ Manage ; 348: 119359, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871550

RESUMO

Bioretention systems are planted media filters used in stormwater infrastructure. Maintaining plant growth and survival is challenging because most designs require significant sand. Conventional bioretention soil media (BSM) might be augmented with biochar to make the BSM more favorable to plants, to improve nutrient removal efficiency, and enhance plant survivability during drought while replacing compost/mulch components that have been linked to excess nutrient export. Pots with BSMs representing high and moderate sand content were amended with wood biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. After 20 weeks, 4% biochar amendment significantly increased stormwater infiltration (67%) and plant available water (52%) in the high sand content BSM (NC mix, which meets requirements for the state of North Carolina (US) and contains no compost/mulch), and these favorable hydraulic properties were not statistically different from a moderate sand content, biochar-free BSM with compost/mulch (DE mix, which meets requirements for state of Delaware (US)). While biochar amendment improved plant height (25%), the number of shoots (89%), and total biomass (70%) in the NC mix, these parameters were still less than those in the biochar-free DE mix containing compost/mulch. TN and NO3-1 removal were also improved (28-35%) by biochar amendment to NC mix, and the resulting TN and TP loadings to groundwater were 10 and 7 times less, respectively than biochar-free DE mix with compost/mulch. During the drought period, biochar amendment increased the time to switchgrass wilting by ∼8 days in the NC mix but remained 40% less than the biochar-free DE mix. A recalcitrant carbon-like biochar mitigates some of the deleterious effects of high sand content BSM on plants, and where nutrient pollution is a concern, replacement of compost/mulch with wood biochar in BSM may be desired.


Assuntos
Areia , Solo , Solo/química , Madeira , Carvão Vegetal/química
4.
Plant Biotechnol J ; 19(3): 517-531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946650

RESUMO

The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.


Assuntos
Ziziphus , China , Frutas/genética , Estudo de Associação Genômica Ampla , Genômica , Ziziphus/genética
5.
Clin Exp Pharmacol Physiol ; 47(8): 1382-1392, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32155673

RESUMO

In this study, we investigated the lipid metabolism regulatory activity of a novel metformin derivative (MD568) and its potential mechanism of action in obese rats with type 2 diabetes mellitus (T2 DM). Previous gene chip analysis of 3T3-L1 cells have shown that MD568 regulates the transcription of genes involved in the peroxisome proliferator-activated receptor (PPAR) signalling pathway, fatty acid metabolism, and glycerolipid metabolism. In this study, obese T2 DM rats were treated with MD568 (200 mg/kg) for 8 weeks. Results showed that MD568 significantly reduced the body weight gain, plasma glucose, insulin, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels. MD568 treatment also improved the insulin resistance of obese T2 DM model rats. In particular, in white adipose tissue, MD568 inhibited the excessive volume increment of adipose cells by down-regulating the protein levels of CCAAT/enhancer-binding protein-α (C/EBP-α) and PPAR-γ, as well as the transcription of their target lipid metabolism-related genes. In the liver, MD568 inhibited hepatic fatty lesions and interfered with hepatic gluconeogenesis by regulating the expression of lipid metabolism-related genes and glycogen-related kinases. In conclusion, our results suggest that the newly synthesized MD568 affects the maintenance of lipid homeostasis in obese type 2 diabetic rats.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metformina/química , Metformina/farmacologia , Obesidade/complicações , Animais , Masculino , Ratos
6.
Chem Biodivers ; 17(4): e1900684, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32064755

RESUMO

Anemarrhena asphodeloides Bunge is a traditional Chinese medicine. The timosaponin BII is one of the most abundant and widely studied active ingredients in Anemarrhena asphodeloides Bunge. Related studies have shown that timosaponin BII has potential value for development and further utilization. The protective effect of timosaponin BII on islet ß cells under type 2 diabetes was investigated in the glycolipid toxic INS-1 cell model and possible biomarkers were explored by lipidomics analysis. Timosaponin BII was isolated from Anemarrhena asphodeloides Bunge by polyamide resin and Sephadex LH-20. Then, the glycolipid toxicity INS-1 cell model was established to investigate the protective effect of timosaponin BII. The results showed that timosaponin BII could significantly influence the levels of malondialdehyde (MDA) and glutathione (GSH), thereby restoring the insulin secretion ability and cell viability of model cells. Lipidomics analysis was combined with multivariate statistical analysis for marker selection. The four most common pathological and pharmacological lipid markers were phosphatidylserine (PS), suggesting that timosaponin BII had protective effects on model cells related to the reduction oxidative stress and macrophage inflammation. RAW264.7 macrophages were stimulated by LPS to establish a model of inflammation and study the effect of timosaponin BII on the nodes of NOD-like receptor P3 (NLRP3) inflammasome pathway in the model cells. In conclusion, timosaponin BII may have the effect of protecting INS-1 pancreatic ß cells through reducing IL-1ß (interleukin-1ß) production by inhibiting the NLRP3 inflammasome in macrophage and restoring the insulin secretion ability and cell viability by reducing oxidative stress.


Assuntos
Anemarrhena/química , Glicolipídeos/toxicidade , Substâncias Protetoras/química , Saponinas/química , Esteroides/química , Anemarrhena/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Análise Discriminante , Glutationa/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Lipidômica/métodos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Malondialdeído/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Células RAW 264.7 , Saponinas/isolamento & purificação , Saponinas/farmacologia , Saponinas/uso terapêutico , Esteroides/isolamento & purificação , Esteroides/farmacologia , Esteroides/uso terapêutico
7.
Molecules ; 25(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302335

RESUMO

Herein, we sought to evaluate the contribution of the 1,3,5-triazine ring through the metformin cyclization unit to the biological activity of magnolol and honokiol-conjugates. One of the phenolic OH groups of magnolol or honokiol was replaced by a 1,3,5-triazine ring to further explore their synthesis and medicinal versatility. In this study, a robust procedure of three steps was adopted for the synthesis of magnolol and honokiol derivatives by alkylation of potassium carbonate with a 1,3,5-triazine ring. To our knowledge, this is the first report to connect one of the phenolic OH positions of magnolol or honokiol to a 1,3,5-triazine ring cyclized by metformin. The structural characterization of three new compounds was carried out via spectroscopic techniques, i.e., 13C NMR, 1H NMR, and HRMS. Surprisingly, these compounds showed no cytotoxicity against RAW 264.7 macrophages but significantly inhibited the proliferation of MCF-7 (human breast cancer cells), HepG2 (human hepatoma cells), A549 (human lung carcinoma cells), and BxPC-3 (human pancreatic carcinoma cells) tumor cell lines. Furthermore, the compounds also significantly inhibited the release of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in the lipopolysaccharide (LPS)-activated mouse cells (RAW 264.7). Among them, compound 2 demonstrated promising broad-spectrum antiproliferative potential with half inhibitory concentration (IC50) values ranging from 5.57 to 8.74 µM and it significantly decreased caspase-3 and Bcl-2 expression in HepG2 cells. These interesting findings show that derivatization of magnolol and honokiol with 1,3,5-triazine affects and modulates their biological properties.


Assuntos
Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacologia , Técnicas de Química Sintética , Lignanas/síntese química , Lignanas/farmacologia , Metformina/química , Triazinas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclização , Citocinas/biossíntese , Regulação da Expressão Gênica , Humanos , Lignanas/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade
8.
Environ Sci Technol ; 53(23): 13841-13849, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684726

RESUMO

Converting poultry litter (PL) into biochar by slow pyrolysis is a promising approach for recycling organic waste with enhanced phosphorus (P) utilization efficiency, which needs fundamental knowledge of in situ P speciation transformation for optimizing the biochar conversion conditions. In this study, solid-state NMR spectroscopy was employed to characterize solid-state P and C speciation of raw PL and PL-derived biochars prepared at various pyrolysis temperatures. The NMR analysis indicated that phytates were decomposed while hydroxyapatite (Ca10(PO4)6(OH)2) formed during conversion of PL to PL-derived biochar at a pyrolysis temperature above 300 °C. With increasing pyrolysis temperature to above 500 °C, farringtonite (Mg3(PO4)2) formed. The higher pyrolysis temperature also favored the formation of calcite and provided deeper carbonization (i.e., greater dominance of thermally stable aromatic structures) in the biochar products. Water extractable P decreased significantly from 2.9 g/kg in PL to less than 0.3 g/kg in the PL-derived biochars prepared above 300 °C, indicating the inhibition effect of pyrolysis on the P lability mainly through transformation of labile phosphates in PL into less soluble forms. Overall, this study suggested that different pyrolysis temperatures should be considered for selective conversion of PL to biochar products with distinct agricultural and environmental applications that demand special P release patterns.


Assuntos
Fósforo , Aves Domésticas , Animais , Carvão Vegetal , Análise de Fourier , Espectroscopia de Ressonância Magnética , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Yi Chuan ; 39(5): 388-395, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28487271

RESUMO

Iron is essential for growth and development of rice, which is able to take up Fe3+-phytosiderophore, Fe2+-nicotianamine and free Fe2+. Researchers have uncovered key molecular components including transporters, enzymes, and chelators involved in iron uptake and translocation, as well as factors regulating the expression of these genes in rice. Manipulation of these molecular components has produced transgenic rice with enhanced tolerance to alkaline stress on calcareous soils with low-Fe availability due to high soil pH. In this review, we mainly summarize the molecular mechanisms of iron uptake, translocation, and regulation in rice, and discuss some perspectives of this field.


Assuntos
Transporte Biológico/fisiologia , Ferro/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo
10.
BMC Microbiol ; 15: 267, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26581712

RESUMO

BACKGROUND: Fungi are ubiquitous in nature and have evolved over time to colonize a wide range of ecosystems including pest control. To date, most research has focused on the hypocrealean genera Beauveria bassiana, which is a typical filamentous fungus with a high potential for insect control. The morphology and components of fungi are important during the spores germination and outgrow to mycelia. However, to the best of our knowledge, there is no report on the morphology and components of B. bassiana spores and mycelia. In the work, the growth and metabolism of Beauveria bassiana spores and mycelia were studied. High performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to study the metabolism of B. bassiana spores and mycelia. Principal component analysis (PCA) based on HPLC-MS was conducted to study the different components of the spores and mycelia of the fungus. Metabolic network was established based on HPLC-MS and KEGG database. RESULTS: Through Gompertz model based on macroscopic and microscopic techniques, spore elongation length was found to increase exponentially until approximately 23.1 h after cultivation, and then growth became linear. In the metabolic network, the decrease of glyoxylate, pyruvate, fumarate, alanine, succinate, oxaloacetate, dihydrothymine, ribulose, acetylcarnitine, fructose-1, 6-bisphosphate, mycosporin glutamicol, and the increase of betaine, carnitine, ergothioneine, sphingosine, dimethyl guanosine, glycerophospholipids, and in spores indicated that the change of the metabolin can keep spores in inactive conditions, protect spores against harmful effects and survive longer. CONCLUSIONS: Analysis of the metabolic pathway in which these components participate can reveal the metabolic difference between spores and mycelia, which provide the tools for understand and control the process of of spores germination and outgrow to mycelia.


Assuntos
Beauveria/crescimento & desenvolvimento , Beauveria/metabolismo , Redes e Vias Metabólicas , Cromatografia Líquida , Espectrometria de Massas , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Análise de Componente Principal , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
11.
J Environ Qual ; 44(3): 963-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024276

RESUMO

Transient changes in wettability complicate the prediction of biochar's hydrologic effects. Biochar wetting properties were characterized from poultry litter biochar (PLBC) produced from slow pyrolysis at temperatures between 300 and 600°C with water drop penetration time (persistence of hydrophobicity) and contact angle (CA; severity of hydrophobicity) measurements. Hydrophobicity was associated with semivolatile organic compounds coating PLBC surfaces, which resulted in 24.4 carbon layers and CAs of 101.1 ± 2.9° at a pyrolysis temperature of 300°C but only 0.4 layers of surface coverage and CAs of 20.6 ± 1.3° when pyrolyzed at 600°C. Mixing PLBC with water removed organic coatings, and storage in water for 72 h decreased CA as much as 81° for the most hydrophobic PLBCs. When mixed with quartz sand of the same particle size, CAs of PLBC-sand mixtures increased from 6.6 ± 1.4° at 0% PLBC mass fraction to 48.3 ± 2.0° at 15% mass fraction. Hydrophobic and hydrophilic PLBCs increased CA by nearly identical amounts at 2 and 5% mass fractions, which was explained by the influence of PLBC particle topology on macroscopic surface roughness of PLBC-sand mixtures. For environmentally relevant situations, PLBC-sand mixtures at mass fractions ≤15% remained water wetting. However, all PLBC additions increased CA, which may alter infiltration rates and induce preferential water flow.

12.
Heliyon ; 10(8): e29557, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644901

RESUMO

Smilacis Glabrae Rhizoma (SGR) is recognized in traditional Chinese medicine for its distinctive therapeutic properties and abundant supply. Its phytochemical profile is diverse, encompassing flavonoids, steroids, saccharides, phenolic glycosides, volatile constituents, organic acids, phenylpropanoids, stilbenoids, among others. Recent pharmacological investigations reveal that SGR possesses a broad spectrum of pharmacological effects with multifaceted clinical applications. This review collates the current knowledge on SGR's chemical composition, pharmacological activities, and its clinical utility. Utilizing network pharmacology and molecular docking approaches, this study provides a preliminary identification of potential quality markers (Q-Markers) within SGR. The findings suggest that compounds such as astilbin, isoengelitin, neoisoastilbin, neoastilbin, astragaloside, diosgenin, resveratrol, stigmasterol, ß-sitosterol, and quercetin in SGR are promising candidates for Q-Markers. While flavonoids are the most extensively studied, there is a pressing need to further explore the active monomeric compounds within SGR. The introduction of Q-Markers is instrumental in developing standardized quality metrics. Specifically, astilbin has been noted for its antitumor, antidiabetic, antihypertensive, anti-hyperuricemic, and hepatoprotective potential, warranting further research for therapeutic applications.

13.
Heliyon ; 10(3): e24695, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314262

RESUMO

Objective: This study aimed to explore the mechanism of the Danggui Jixueteng decoction (DJD) in treating Myelosuppression after chemotherapy (MAC) through network pharmacology and metabolomics. Methods: We obtained the chemical structures of DJD compounds from TCMSP and PubMed. SwissTargetPrediction, STITCH, CTD, GeneCards, and OMIM were utilized to acquire component targets and MAC-related targets. We identified the key compounds, core targets, main biological processes, and signaling pathways related to DJD by constructing and analyzing related networks. The main active compounds and key proteins of DJD in treating AA were confirmed by molecular docking. A MAC rat model was established through intraperitoneal injection of cyclophosphamide to confirm DJD's effect on the bone marrow hematopoietic system. Untargeted metabolomics analyzed serum metabolite differences between MAC rats and the control group, and before and after DJD treatment, to explore DJD's mechanism in treating MAC. Results: Of the 93 active compounds identified under screening conditions, 275 compound targets and 3113 MAC-related targets were obtained, including 95 intersecting targets; AKT1, STAT3, CASP3, and JUN were key proteins in MAC treatment. The phosphatidylinositol-3-kinase/RAC-alpha serine/threonine-protein kinase (PI3K/AKT) signaling pathway may play a crucial role in MAC treatment with DJD. Molecular docking results showed good docking effects of key protein AKT1 with luteolin, ß-sitosterol, kaempferol, and glycyrrhizal chalcone A. In vivo experiments indicated that, compared to the model group, in the DJD group, levels of WBCs, RBCs, HGB, and PLTs in peripheral blood cells, thymus index increased, spleen index decreased, serum IL-3, GM-CSF levels increased, and IL-6, TNF-α, and VEGF levels decreased (p < 0.01); the pathological morphology of femoral bone marrow improved. Eleven differential metabolites were identified as differential serum metabolites, mainly concentrated in phenylalanine, tyrosine, and tryptophan biosynthesis pathways, phenylalanine metabolism, and arachidonic acid metabolism. Conclusion: This study revealed that DJD's therapeutic effects are due to multiple ingredients, targets, and pathways. DJD may activate the PI3K/AKT signaling pathway, promote hematopoietic-related cytokine production, regulate related metabolic pathways, and effectively alleviate cyclophosphamide-induced myelosuppression after chemotherapy in rats.

14.
ACS Omega ; 9(26): 28926-28936, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973888

RESUMO

Danggui Jixueteng decoction (DJD) has been used to treat anemia for many years and has been shown to be effective. However, the mechanism of action and effective components are yet unknown. We want to search for pharmacodynamic components in DJD with therapeutic effects on myelosuppression after chemotherapy (MAC), utilizing a spectrum-effect connection study based on gray relational analysis and partial least-squares regression analysis. Transcriptome sequencing (RNA-Seq) was used to investigate the mechanism by which DJD treats MAC. In this study, fingerprints of different batches of DJD (S1-S10) were established by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), after which the resulting shared peaks were screened and identified. A total of 21 common peaks were screened through the fingerprints of different batches of DJD, and the similarity of each profile was greater than 0.92. The 21 shared peaks were identified by comparison with the standard sample and searching on a MassLynx 4.1 workstation. The rat model of MAC was established by intraperitoneal injection of cyclophosphamide, and DJD treatment was carried out in parallel with the establishment of the model. White blood cell count, red blood cell count, platelet count, interleukin-3, hemoglobin concentration, granulocyte-macrophage colony-stimulating factor, and nucleated cell count were used as efficacy indicators. Pharmacodynamic results indicated that DJD could effectively improve the pharmacodynamic indices of MAC rats. The results of gray relational analysis demonstrated eight peaks with high correlation with efficacy, which were 2, 7, 10, 14, 15, 16, 18, and 21, and the partial least-squares regression analysis showed four peaks with variable importance in projection values greater than 1, which were 10, 12, 13, and 19. RNA-Seq was used to identify DEGs in rat bone marrow cells, Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were performed. The genes related to the effects of DJD on MAC were mainly involved in the phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K-Akt) signaling pathway, the mitogen-activated protein kinase signaling pathway, actin cytoskeleton regulation, focal adhesion, and Rap1 signaling pathways. The results of the RNA-Seq study were confirmed by a qPCR experiment. The effective compounds of DJD against MAC include albiflorin, paeoniflorin, gallopaeoniflorin, salvianolic acid H/I, albiflorin R1, salvianolic acid B, salvianolic acid E, benzoylpaeoniflorin, and C12H18N5O4. The mechanism by which DJD prevents and treats MAC might involve the control of the PI3K-Akt signaling pathway.

15.
Chemosphere ; 302: 134740, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35489452

RESUMO

The low-temperature SCR of NOx by NH3 is restricted in application since the catalysts is easily poisoned by sulfur and water. The Fe modified Mn-Co-Ce/TiO2/SiO2 catalysts synthesized via impregnation method and sulfating were evaluated for low-temperature NH3-SCR in the presence of SO2 and H2O. The calcination temperature and loading amounts of Mn, Fe, Co and Ce were optimized. Adding of Fe into S-MnCoCe/Ti/Si played an important role in resistance to sulfur and water poisoning. The optimal calcination temperature was 380 °C and the optical mass loading of the catalyst was 10% of Mn, 10% of Fe, 1% of Co and 4% of Ce. The optimal S-MnFeCoCe/Ti/Si catalyst maintained high NOx conversion of 93% at reaction temperature of 160 °C in the presence of 50 ppm SO2 and 10 vol% H2O. The catalytic activity did not continue to fall after two times of repeated used in the temperature range of 100-200 °C, indicating its excellent sulfur and water durability and stability in the presence of SO2 and H2O. The interaction between MnOx and FeOx enhanced sulfur and water durability rather than other bi-metal interactions. Furthermore, the mechanism of Fe improving resistance to SO2 and H2O was discussed.


Assuntos
Titânio , Água , Amônia , Catálise , Oxirredução , Dióxido de Silício , Enxofre , Temperatura
16.
ACS Appl Mater Interfaces ; 14(34): 39299-39310, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35972900

RESUMO

Hydrogels are often used to fabricate strain sensors; however, they also suffer from freezing at low temperatures and become dry during long-time storage. Encapsulation of hydrogels with elastomers is one of the methods to solve these problems although the adhesion between hydrogels and elastomers is usually low. In this work, using bovine serum protein (BSA) as the natural globulin model and glycerol/H2O as the mixture solvent, BSA/polyacrylamide organohydrogels (BSA/PAAm OHGs) were prepared by a facile photopolymerization approach. At the optimal condition, BSA/PAAm OHG demonstrated not only high toughness but also tough adhesion properties, which could strongly adhere to various substrates, such as glass, metals, rigid polymeric materials (even poly(tetrafluoroethylene), i.e., PTFE), and soft elastomers. Moreover, BSA/PAAm OHG was flexible and showed tough adhesion at -20 °C. The toughening mechanism and the adhesive mechanism were proposed. On being encapsulated by poly(dimethylsiloxane) (PDMS), it illustrated good antidrying performance. After introducing a conductive filler, the encapsulated BSA/PAAm OHG could be used as a strain sensor to detect human motions. This work provides a better understanding of the adhesive mechanism of natural protein-based organohydrogels.


Assuntos
Adesivos , Globulinas , Adesivos/química , Elastômeros , Condutividade Elétrica , Humanos , Hidrogéis/química
17.
Environ Technol ; 33(15-16): 1789-98, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22439566

RESUMO

To promote utilization of poultry litter as a source material for manufacturing low-cost activated carbon (AC) that can be used in wastewater treatment, this study investigated optimal production conditions and water-borne organic sorption potential of poultry litter-based AC. Pelletized broiler litter was carbonized at different temperatures for varied time periods and activated with steam at a range of flow rate and time. The AC products were examined for quality characteristics using standard methods and for organic sorption potentials using batch benzene sorption techniques. The study shows that the yield and quality of litter AC varied with production conditions. The optimal production conditions for poultry litter-based AC were carbonization at 700 degrees C for 45 min followed by activation with 2.5 ml min(-1) steam for another 45 min. The resulting AC possessed an iodine number of 454 mg g(-1) and a specific surface area of 403 m2 g(-1). It sorbed benzene in water following sigmoidal kinetic and isothermal patterns. The sorption capacity for benzene was 23.70 mg g(-1), lower than that of top-class commercial AC. The results, together with other reported research findings, suggest that poultry litter is a reasonable feedstock for low-cost AC applicable to pre-treat wastewater contaminated by organic pollutants and heavy metals.


Assuntos
Benzeno/isolamento & purificação , Carvão Vegetal , Esterco , Adsorção , Animais , Galinhas , Reciclagem , Purificação da Água
18.
Food Chem ; 347: 129005, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482487

RESUMO

Jujube leaf is well known for its high nutritional value and medicinal benefits. However, a thorough and dynamic assessment of the metabolites present in jujube leaves is lacking. Here, the primary and secondary metabolites from purple leaf buds and green mature leaves were investigated using ultra-high-performance liquid chromatography/tandem mass spectrometry. A total of 778 metabolites were characterized and more than 700 compounds were reported for the first time. Analysis of differentially accumulated metabolites showed that the flavonoids were the major differential metabolites and determined the leaf coloration. The transcriptome data indicated that 20 flavonoid structural genes and three main types of flavonoid regulatory genes were significantly differentially expressed. Moreover, light had a significant influence on flavonoid accumulation. These results improve our understanding of metabolite accumulation and the molecular mechanisms of flavonoid biosynthesis in jujube leaf.


Assuntos
Metaboloma , Transcriptoma , Ziziphus/metabolismo , Cromatografia Líquida de Alta Pressão , Cor , Análise Discriminante , Flavonoides/análise , Análise dos Mínimos Quadrados , Luz , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , RNA de Plantas/metabolismo , Espectrometria de Massas em Tandem , Ziziphus/química , Ziziphus/genética
19.
Front Cell Dev Biol ; 9: 762571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692710

RESUMO

As the elementary unit of eukaryotic chromatin, nucleosomes in vivo are highly dynamic in many biological processes, such as DNA replication, repair, recombination, or transcription, to allow the necessary factors to gain access to their substrate. The dynamic mechanism of nucleosome assembly and disassembly has not been well described thus far. We proposed a chemical kinetic model of nucleosome assembly and disassembly in vitro. In the model, the efficiency of nucleosome assembly was positively correlated with the total concentration of histone octamer, reaction rate constant and reaction time. All the corollaries of the model were well verified for the Widom 601 sequence and the six artificially synthesized DNA sequences, named CS1-CS6, by using the salt dialysis method in vitro. The reaction rate constant in the model may be used as a new parameter to evaluate the nucleosome reconstitution ability with DNAs. Nucleosome disassembly experiments for the Widom 601 sequence detected by Förster resonance energy transfer (FRET) and fluorescence thermal shift (FTS) assays demonstrated that nucleosome disassembly is the inverse process of assembly and can be described as three distinct stages: opening phase of the (H2A-H2B) dimer/(H3-H4)2 tetramer interface, release phase of the H2A-H2B dimers from (H3-H4)2 tetramer/DNA and removal phase of the (H3-H4)2 tetramer from DNA. Our kinetic model of nucleosome assembly and disassembly allows to confirm that nucleosome assembly and disassembly in vitro are governed by chemical kinetic principles.

20.
Rice (N Y) ; 13(1): 61, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32845426

RESUMO

BACKGROUND: Global warming threatens rice growth and reduces yields. Proline plays important roles in plant abiotic stress tolerance. Previous research demonstrated that engineering proline metabolism-related genes can enhance tolerance to freezing and salinity in Arabidopsis. OsProDH encodes a putative proline dehydrogenase and is a single copy gene in rice. However, whether OsProDH plays roles in abiotic stress in rice remains unknown. FINDINGS: Quantitative RT-PCR analysis revealed that OsProDH transcript contents were relatively higher in leaf blade and root tissues and the high temperature treatment repressed expression of OsProDH. The predicted OsProDH protein localized in mitochondria. Using the Oryza sativa ssp. japonica cultivar KY131, we generated OsProDH overexpression (OE) lines and knockout mutant lines using the CRISPR/Cas9 (CRI) system. Overexpression of OsProDH decreased proline content, while mutation of OsProDH increased proline content compared with that of KY131. The CRI and OE lines were respectively more resistant and sensitive to heat stress than KY131. Heat stress induced proline accumulation and mutation of OsProDH led to proline overproduction which reduced H2O2 accumulation in the seedlings. CONCLUSIONS: OsProDH negatively regulates thermotolerance in rice. Our study provides a strategy to improve heat tolerance in rice via manipulating proline metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA