Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Mater ; 23(4): 570-576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38297141

RESUMO

Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The µ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.

2.
Proc Natl Acad Sci U S A ; 119(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022240

RESUMO

The quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy. Analysis indicates that the DQC superlattice is composed of mesoatoms with an unusually broad volume distribution. The interplays of submesoatomic (molecular) and mesoatomic (supramolecular) local packings are found to play a crucial role in not only the formation of the metastable DQC superlattice but also its transition to dodecagonal quasicrystal and Frank-Kasper σ superlattices.

3.
Angew Chem Int Ed Engl ; : e202409387, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925605

RESUMO

Phosphine-ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low-coordinate mono(phosphine)-Rh catalyst on a metal-organic layer (MOL), P-MOL●Rh, and its applications in the hydrogenation of mono-, di-, and tri-substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site-isolated mono(phosphine)-Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P-MOL●Rh in catalytic hydrogenation reactions.

4.
Chemistry ; 29(63): e202302352, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584964

RESUMO

In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.

5.
Biomacromolecules ; 24(11): 5071-5082, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37691317

RESUMO

Polymeric vehicles often exhibit batch-to-batch variations due to polydispersity, limiting their reproducibility for biomedical applications. In contrast, polyhedral oligomeric silsesquioxane (POSS) has emerged as an attractive candidate for drug delivery due to its precise chemical structure and rigid molecular shape. A promising strategy to enhance drug efficacy while reducing systemic toxicity is the development of multi-stimuli-responsive delivery systems capable of targeted drug release at a disease site. Herein, we developed a drug delivery platform based on POSS-polymer conjugates. By functionalizing the POSS with amino groups and establishing B-N coordination with boronic acids, the nanoparticles (NPs) exhibit responsive behavior to stimuli, including adenosine-5'-triphosphate (ATP), acidic pH, and nucleophilic reagents. We successfully encapsulated two boronic acid-containing molecules: tetraphenylethylene (TPE), serving as a fluorescent probe, and bortezomib (BTZ), an anticancer drug. The TPE@NPs were employed to visualize the cellular uptake of NPs by tumor cells, while the BTZ@NPs exhibited increased cytotoxicity in tumor cells compared with normal cells. This POSS-PEG conjugate offers a nanoparticle platform for encapsulating versatile boronic acid-containing molecules, thereby enhancing drug efficacy while minimizing systemic toxicity. Given the wide-ranging applications of boronic acid-containing molecules in biomedicine, our platform holds significant promise for the development of intelligent drug delivery systems for diagnostics and therapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Ácidos Borônicos/química , Reprodutibilidade dos Testes , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Bortezomib/farmacologia , Polímeros/química
6.
Macromol Rapid Commun ; 44(1): e2200319, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35652408

RESUMO

Due to the fast phase separation kinetics and small feature size, the self-assembly of giant molecules has attracted lots of attention. However, there is not much study on multicomponent giant surfactants. In this work, through a modular synthetic strategy, different polyhedral oligomeric silsesquioxane (POSS)-based molecular nanoparticles are installed with diverse functionalities (hydrophobic octavinyl POSS (VPOSS), hydrophilic dihydroxyl-functionalized POSS (DPOSS), and omniphobic perfluoroalkyl-chain-functionalized POSS (FPOSS)) on the ends of one polystyrene (PS) chain to build up a series of triblock bola-form giant surfactants denoted as XPOSS-PSn -FPOSS (X represents V or D). The target molecules are prepared by a combination of atom transfer radical polymerization (ATRP), esterification, as well as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene "click" reactions. These macromolecules are thoroughly characterized by combined technologies including nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses. It is revealed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) that VPOSS-PSn -FPOSS adopts a two-phase separation scenario where VPOSS and POSS are segregated in one phase. DPOSS-PSn -FPOSS with a third hydrophilic DPOSS shows a three-phase separation scenario, where highly ordered phase structures are difficult to develop owing to the competition of mutual phase separation processes and may be trapped in kinetically metastable states.


Assuntos
Nanopartículas , Tensoativos , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química
7.
J Nanobiotechnology ; 21(1): 222, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438752

RESUMO

Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.


Assuntos
Colite , Eucommiaceae , Doenças Inflamatórias Intestinais , Selênio , Animais , Camundongos , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
8.
Angew Chem Int Ed Engl ; 62(35): e202306905, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37418318

RESUMO

Although many monometallic active sites have been installed in metal-organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF-NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF-253 with the formula of Al(OH)(2,2'-bipyridine-5,5'-dicarboxylate) for Z-selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,ß-unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅- )NiII (µ2 -H)2 NiII (bpy⋅- ) as the active catalyst. MOF-NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution-inaccessible Earth-abundant bimetallic MOF catalysts for sustainable catalysis.

9.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077044

RESUMO

Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos , Acidente Vascular Cerebral/metabolismo
10.
Angew Chem Int Ed Engl ; 61(28): e202203433, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35478477

RESUMO

The hierarchical self-assembly process opens up great potential for the construction of nanostructural superlattices. Precise regulation of self-assembled superlattices, however, remains a challenge. Even when the primary molecules are precise, the supramolecular motifs (or secondary building blocks) can vary dramatically. In the present work, we propose the concept of unimolecular nanoparticles (UMNPs). The UMNPs act as the supramolecular motif and directly pack into the superlattices. A highly branched giant molecule is presented. We systematically explore its conformations and the superlattice of this giant molecule. Moreover, intriguing complex phases are discovered when blending this UMNP with other conventional giant molecules. These binary mixtures provide direct evidence to support our previously proposed self-sorting process in the self-assembly of "soft alloys". The concept of UMNPs offers a unique approach toward more precise regulation of self-assembled superlattices in soft matter.

11.
Angew Chem Int Ed Engl ; 61(19): e202200637, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174943

RESUMO

The packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging. Here, we utilize a novel self-sorting assembly approach to tackle this challenge in binary blends of soft matter. Two types of giant shape amphiphiles self-sort to form their discrete spherical motifs, which further simultaneously pack into alloy-like phases. Three unconventional spherical packing phases have been observed in these binary systems, including MgZn2 , NaZn13 , and CaCu5 phases. It's the first time that the CaCu5 phase is experimentally observed in soft matter. This work demonstrates a general approach to constructing unconventional spherical packing phases and other complex superlattices in soft matter.

12.
BMC Genomics ; 22(1): 868, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856924

RESUMO

BACKGROUND: As a popular and valuable technique, grafting is widely used to protect against soil-borne diseases and nematodes in vegetable production. Growing evidences have revealed that long intergenic ncRNAs (lincRNAs) are strictly regulated and play essential roles in plants development and stress responses. Nevertheless, genome-wide identification and function deciphering of pepper lincRNAs, especially for their roles in improving grafting pepper resistance to Phytophthora capsici is largely unknown. RESULTS: In this study, RNA-seq data of grafting and control pepper plants with or without P. capsici inoculation were used to identify lincRNAs. In total, 2,388 reliable lincRNAs were identified. They were relatively longer and contained few exons than protein-coding genes. Similar to coding genes, lincRNAs had higher densities in euchromatin regions; and longer chromosome transcribed more lincRNAs. Expression pattern profiling suggested that lincRNAs commonly had lower expression than mRNAs. Totally, 607 differentially expressed lincRNAs (DE-lincRANs) were identified, of which 172 were found between P. capsici resistance grafting pepper sample GR and susceptible sample LDS. The neighboring genes of DE-lincRNAs and miRNAs competitively sponged by DE-lincRNAs were identified. Subsequently, the expression level of DE-lincRNAs was further confirmed by qRT-PCR and regulation patterns between DE-lincRNAs and neighboring mRNAs were also validated. Function annotation revealed that DE-lincRNAs increased the resistance of grafting prepper to P. capsici by modulating the expression of disease-defense related genes through cis-regulating and/or lincRNA-miRNA-mRNA interaction networks. CONCLUSIONS: This study identified pepper lincRNAs and suggested their potential roles in increasing the resistance level of grafting pepper to P. capsici.


Assuntos
Capsicum , Phytophthora , Piper nigrum , RNA Longo não Codificante , Capsicum/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , RNA Longo não Codificante/genética
13.
J Am Chem Soc ; 143(51): 21613-21621, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913335

RESUMO

Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.

14.
J Am Chem Soc ; 143(33): 12935-12942, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387467

RESUMO

We report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.g., 581 m2/g) and a uniform and narrow pore size distribution (e.g., 3.3 nm) were achieved. Mesoporous silica in diverse shapes and morphologies were achieved by processing the precursor. When the PS tail length was increased, the pore size expanded accordingly. Moreover, such pyrolyzed, ordered mesoporous silica can help to increase both efficiency and stability of nanocatalysts.

15.
Curr Genet ; 67(6): 909-918, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34287660

RESUMO

Trichoderma polysporum was a pathogenic fungi which showed strong pathogenicity to Avena fatua L. in recent study. The stress response of A. fatua to T. polysporum is mediated by the regulation of gene expression. Quantification of the expression of genes requires normalizing RT-qPCR data using reference genes with stable expression in the system studied as internal standards. To construct a RT-qPCR system suitable for response of A. fatua to T. polysporum, and screen stable internal reference genes, GeNorm, NormFinder, BestKeeper and RefFinde were used to perform SYBR Green-based RT-qPCR analysis on eight candidate internal reference genes (18S, 28S, TUA, UBC, ACT, GAPDH, TBP and EF-1α) in A. fatua samples after inoculation of T. polysporum Strain HZ-31. The results showed that TBP, 18S and UBC were the most stable internal reference genes, TBP and TUA, TBP and GAPDH, 18S and TBP, UBC and 18S were the most suitable combination of the two internal reference genes, which could be used as internal reference genes for functional gene expression analysis during the interaction between T. polysporum and A. fatua. This is the first study describing a set of reference genes with a stable expression under fungi stress in A. fatua. These genes are also candidate reference genes of choice for studies seeking to identify stress-responsive genes in A. fatua.


Assuntos
Avena/genética , Avena/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Hypocreales/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Estabilidade de RNA , Transcriptoma
16.
Chemistry ; 27(30): 7992-7997, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33830540

RESUMO

Achieving self-assembled nanostructures with ultra-small feature sizes (e. g., below 5 nm) is an important prerequisite for the development of block copolymer lithography. In this work, the preparation and self-assembly of a series of giant molecules composed of vinyl polyhedral oligomeric silsesquioxane (VPOSS) tethered with monodispersed oligo(L-lactide) chains are presented. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) results demonstrate that ultra-small domain sizes (down to 3 nm) of phase separated lamellar morphology are achieved in bulk, driven by the strong tendency and fast kinetics for crystallization of VPOSS moieties. Moreover, upon gamma ray radiation, VPOSS cages in the lamellar structure can be crosslinked via polymerization of the vinyl groups. After pyrolysis at high temperature, ultra-thin two-dimensional nano-silica sheets can be obtained.

17.
Arch Microbiol ; 203(7): 4587-4592, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34160628

RESUMO

The two-component Cry48Aa/Cry49Aa toxin produced by Lysinibacillus sphaericus shows specifically toxic to Culex quinquefasciatus mosquito larvae. Cry49Aa C-terminal domain is responsible for specific binding to the larval gut cell membrane, while its N-terminal domain is required for interaction with Cry48Aa. To investigate functional role of cysteine in Cry49Aa, four cysteine residues at positions 70, 91, 183, and 258 were substituted by alanine. All mutants showed similar crystalline morphology and comparable yield to that of the wild type except that the yield of the C91A mutant was low. Four cysteine residues did not involve in disulfide bond formation within or between Cry49Aa molecules. Cys91, Cys183, and Cys258 are essential for larvicidal activity against C. quinquefasciatus larvae, while Cys70 is not. Substitution at C91, C183, and C258 caused weaker Cry48Aa- Cry49Aa interaction, while mutations at C183 and C258 reduced the binding capacities to the larval gut cell membrane. Thus, Cysteine residues at position 91, 183, and 258 in Cry49Aa are required for full toxicity of Cry48Aa/Cry49Aa toxin.


Assuntos
Toxinas Bacterianas , Culex , Animais , Bacillaceae/genética , Bacillaceae/patogenicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Culex/efeitos dos fármacos , Culex/microbiologia , Cisteína/genética , Larva/efeitos dos fármacos
18.
Immunopharmacol Immunotoxicol ; 43(1): 85-93, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33406939

RESUMO

BACKGROUND: Previous studies have demonstrated that mifepristone in the daily low-dose affects the function of endometrium. These researches also implied an alteration of endometrium immune balance, which might be involved in regulating endometrial function. However, the detailed mechanisms remain to be further explored. METHODS: In this study, the expressions of CD80, CD86, and ICAM-1 in dendritic cells (DCs), which were stimulated with different concentrations of mifepristone (20, 65, and 200 nM), were detected by FACS. After that, we further evaluated the expression of Forkhead box P3 (FOXP3) and IL-10 in Tregs, which co-cultured with mifepristone treated DCs. In mechanism, we compared the indoleamine 2,3-dioxygenase (IDO) and TGF-ß expression with enzyme-linked immunosorbent assay (ELISA). RESULTS: The results indicated that mifepristone promoted the expressions of CD80, CD86, and ICAM-1 in a dosage dependent manner. Reversely, FOXP3 and IL-10 expression levels in Tregs co-cultured with mifepristone-treated DCs were significantly decreased compared with those co-cultured with nontreated DC. Furthermore, a significant reduce in IDO and TGF-ß expression was observed in DCs treated with mifepristone. By using the IDO inhibitor (1-methyl tryptophan, 1-MT) or TGF-b supplement, we confirmed that TGF-ß, but not IDO could rescue the downregulation of FOXP3 and IL-10 in Tregs co-cultured with mifepristone treated DCs. All of these results suggest that mifepristone may regulate DC function by decreasing TGF-ß expression, which further results in the downregulations of FOXP3 and IL-10 in Tregs. CONCLUSION: Therefore, our research provides a theoretical basis for a potentially clinical application of mifepristone as a novel contraceptive.


Assuntos
Células Dendríticas/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Adulto , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/imunologia , Adulto Jovem
19.
Plant Dis ; 105(4): 879-888, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33141640

RESUMO

Stripe rust is a foliar disease in wheat caused by Puccinia striiformis f. tritici. The best way to protect wheat from this disease is by growing resistant cultivars. Tetraploid wheat can serve as a good source of valuable genetic diversity for various traits. Here, we report the mapping of nine stripe rust resistance quantitative trait loci (QTL) effective against P. striiformis f. tritici in China and Israel. We used recombinant inbred lines (RILs) developed from a cross between the durum wheat cultivar Svevo and Triticum dicoccoides accession Zavitan. By genotyping the RIL population of 137 lines using the wheat 90K single-nucleotide polymorphism array, we mapped an adult-plant resistance locus QYrsv.swust-1BL.1, the most effective QTL, within a 0.75-centimorgan region in T. turgidum subsp. durum 'Svevo' on chromosome arm 1BL, corresponding to the region of 670.7 to 671.5 Mb on the Chinese Spring chromosome arm 1BL. Of the other eight minor-effect stripe rust QTL, seven were from Svevo and mapped on chromosomes 1A, 1B, 2B, 3A, 4A, and 5A, and one was from Zavitan and mapped on chromosome 2A. Several QTL with epistatic effects were identified as well. The markers linked to the resistance QTL can be useful in marker-assisted selection for incorporation of these resistance QTL into both durum and common wheat cultivars.


Assuntos
Resistência à Doença , Triticum , China , Resistência à Doença/genética , Humanos , Israel , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética
20.
Angew Chem Int Ed Engl ; 60(9): 4894-4900, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33210413

RESUMO

Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the unexpected elastic behaviors. SNPCs are prepared by coordination-driven assembly of polyhedral oligomeric silsesquioxane (POSS) with metal-organic polyhedron (MOP). Due to the disparity in sizes, the POSS-MOP assemblies, like their classic nanoparticles counterparts, ordering is suppressed, and the POSS-MOP mixtures will vitrify or jam as a function of decreasing temperature. An unexpected elasticity is observed for the SNPC assemblies with a high modulus that is maintained at temperatures far beyond the glass transition temperature. From studies on the dynamics of the hierarchical structures of SNPCs and molecular dynamic simulation, the elasticity has its origins in the interpenetration of POSS-ended arms. The physical molecular interpenetration and inter-locking phenomenon favors the convenient solution or pressing processing of the novel cluster-based elastomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA