Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pharmacol Res ; 152: 104575, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805343

RESUMO

Aberrant over-expressions of FGF9 in gastric cancer (GC) and its high-affinity receptor FGFR3c in bladder cancer (BC) provide possibilities for the treatment of GC and BC via targeting FGF9. In this study, we isolated a novel FGF9-binding peptide (P4) by screening a phage display random heptapeptide library. Sequence comparison showed that P4 shared high homology with the conserved motif in the immunoglobulin-like (Ig-like) domain II∼III (D2-D3) linker of the FGF9 high-affinity receptor (FGFR3c). The interaction between P4 and FGF9 was confirmed by the surface plasmon resonance (SPR) assay. Functional analysis indicated that P4 counteracted FGF9-induced aggressive phenotype, including cell proliferation, migration, and invasion in vitro, as well as suppressed tumor growth in vivovia down-regulation of the MAPKs and Akt cascades. More importantly, we found that FGF9 served as an underlying mechanism of the chemoresistance in GC and BC cells, and P4 could increase the sensitivity to the chemical agent via antagonizing the suppression effects of FGF9 on cell apoptosis. Taken together, our study identified a novel binding peptide for FGF9, which may serve as a potential therapeutic agent for malignant tumors featured by abnormally up-regulation of FGF9.


Assuntos
Fator 9 de Crescimento de Fibroblastos/antagonistas & inibidores , Peptídeos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Biblioteca de Peptídeos , Peptídeos/farmacologia , Neoplasias Gástricas/patologia , Carga Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/patologia
2.
Anticancer Drugs ; 30(10): 973-982, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31503014

RESUMO

Fibroblast growth factor-2 (FGF2) is a protein ligand, which exerts essential roles in development, angiogenesis, and tumor progression via activation of the downstream signaling cascades. Accumulating evidence has demonstrated that FGF2 is involved in the progression of ovarian cancer, providing a novel potential target for ovarian cancer therapy. In this study, we showed that FGF2 is significantly increased in ovarian tumors, and is negatively associated with the overall survival of ovarian cancer by database analysis. A short peptide obtained from a heptapeptide phage display library suppressed FGF2-induced proliferation, migration, and invasion of the p53-null epithelial ovarian cancer (EOC) cells. Further investigations revealed that the short peptide antagonized the effects of FGF2 on G0/G1 to S cell phase promotion, cyclin D1 expression, and MAPK and Akt signaling activation, which might contribute to the mechanism underlying the inhibitory effects of the short peptide on the aggressive phenotype of the ovarian cancer cells triggered by FGF2. Moreover, the short peptide might have the potentials of reversing FGF2-induced resistance to the doxorubicin via downregulation of the antiapoptotic proteins and counteracting of the antiapoptotic effects of FGF2 on p53-null EOC cells. Taken together, the short peptide targeting FGF2 may provide a novel strategy for improving the therapeutic efficiency in a subset of EOC.


Assuntos
Carcinoma Epitelial do Ovário/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Biblioteca de Peptídeos , Fase S/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
3.
Curr Drug Targets ; 24(4): 371-378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36734909

RESUMO

INTRODUCTION: Postnatal cardiomyocytes respond to stress signals by hypertrophic growth and fetal gene reprogramming, which involves epigenetic remodeling mediated by histone methyltransferase polycomb repressive complex 2 (PRC2) and histone deacetylases (HDACs). However, it remains unclear to what extent these histone modifiers contribute to the development of cardiomyocyte hypertrophy. METHODS: Neonatal rat ventricular myocytes (NRVMs) were stimulated by phenylephrine (PE; 50µM) to induce hypertrophy in the presence or absence of the PRC2 inhibitor GSK126 or the HDACs inhibitor Trichostatin A (TSA). Histone methylation and acetylation were measured by Western blot. Cell size was determined by wheat germ agglutinin (WGA) staining. Cardiac hypertrophy markers were quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: PE treatment induced the expression of cardiac hypertrophy markers, including natriuretic peptide A (Nppa), natriuretic peptide B (Nppb), and myosin heavy chain 7 (Myh7), in a time-dependent manner in NRVMs. Histone modifications, including H3K27me3, H3K9ac, and H3K27ac, were dynamically altered after PE treatment. Treatment with TSA and GSK126 dose-dependently repressed histone acetylation and methylation, respectively. While TSA reversed the PE-induced cell size enlargement in a wide range of concentrations, cardiomyocyte hypertrophy was only inhibited by GSK126 at a higher dose (1µM). Consistently, TSA dose-dependently suppressed the induction of Nppa, Nppb, and Myh7/Myh6 ratio, while these indexes were only inhibited by GSK126 at 1µM. However, TSA, but not GSK126, caused pro-hypertrophic expression of pathological genes at the basal level. CONCLUSION: Our data demonstrate diversified effects of TSA and GSK126 on PE-induced cardiomyocyte hypertrophy, and shed light on epigenetic reprogramming in the pathogenesis of cardiac hypertrophy.


Assuntos
Inibidores de Histona Desacetilases , Miócitos Cardíacos , Ratos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Miócitos Cardíacos/metabolismo , Histonas/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Fenilefrina/uso terapêutico , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Peptídeos Natriuréticos/metabolismo , Peptídeos Natriuréticos/farmacologia , Peptídeos Natriuréticos/uso terapêutico
4.
Front Cardiovasc Med ; 8: 791501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977198

RESUMO

Pathological growth of cardiomyocytes during hypertrophy is characterized by excess protein synthesis; however, the regulatory mechanism remains largely unknown. Using a neonatal rat ventricular myocytes (NRVMs) model, here we find that the expression of nucleosome assembly protein 1 like 5 (Nap1l5) is upregulated in phenylephrine (PE)-induced hypertrophy. Knockdown of Nap1l5 expression by siRNA significantly blocks cell size enlargement and pathological gene induction after PE treatment. In contrast, Adenovirus-mediated Nap1l5 overexpression significantly aggravates the pro-hypertrophic effects of PE on NRVMs. RNA-seq analysis reveals that Nap1l5 knockdown reverses the pro-hypertrophic transcriptome reprogramming after PE treatment. Whereas, immune response is dominantly enriched in the upregulated genes, oxidative phosphorylation, cardiac muscle contraction and ribosome-related pathways are remarkably enriched in the down-regulated genes. Although Nap1l5-mediated gene regulation is correlated with PRC2 and PRC1, Nap1l5 does not directly alter the levels of global histone methylations at K4, K9, K27 or K36. However, puromycin incorporation assay shows that Nap1l5 is both necessary and sufficient to promote protein synthesis in cardiomyocyte hypertrophy. This is attributable to a direct regulation of nucleolus hypertrophy and subsequent ribosome assembly. Our findings demonstrate a previously unrecognized role of Nap1l5 in translation control during cardiac hypertrophy.

5.
Eur J Pharmacol ; 880: 173100, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32320704

RESUMO

Prostate cancer (PCa) is the most common malignancy among men. Tumor metastasis and chemoresistance contribute to the major cause of the mortality. In this study, we compared the protein profiles of two prostate cancer cell lines with different metastatic potentials, and identified cofilin-1 (CFL1) was one of the most differentially expressed proteins between two cell lines. Further results suggested that cofilin-1 promoted the remodeling of F-actin cytoskeleton, and enhanced the proliferation, migration and invasion of the prostate cancer cells via activation of P38 MAPK signaling pathway. In addition, cofilin-1 elevated the expression and drug efflux activity of multidrug resistance protein 1 (MDR1) by P38 MAPK signaling pathway, resulting in decrease of the adriamycin-induced apoptosis as well as the lytic cell death, and the subsequent resistance against adriamycin. Collectively, cofilin-1 might serve as a novel target candidate for both inhibiting the metastasis and reversing the chemoresistance of PCa.


Assuntos
Cofilina 1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antibióticos Antineoplásicos/farmacologia , Movimento Celular , Cofilina 1/genética , Doxorrubicina/farmacologia , Humanos , Masculino , Células PC-3 , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA