Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754649

RESUMO

The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.


Assuntos
Aeromonas hydrophila , Peixes-Gato , Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Filogenia , Receptor 2 Toll-Like , Receptor 5 Toll-Like , Animais , Peixes-Gato/imunologia , Peixes-Gato/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Edwardsiella tarda/fisiologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Transcriptoma
2.
Fish Shellfish Immunol ; 141: 109021, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633342

RESUMO

In mammals, fas-associated protein with death domain (FADD) is involved in the process of cell apoptosis and plays a key role in innate immune signaling. Nevertheless, its detailed molecular mechanisms underlying apoptosis and immune responses to exogenous bacterial infections in teleosts remain largely unknown. In this study, a group of 60 hybrid yellow catfish (with the body weight of 25 ± 0.5 g) were used in subsequent experiments, we examined the expression profiling of fadd gene through comparative genomics and comparative immunological methods. Our results showed that fadd in the hybrid yellow catfish (hycfadd) exhibited similar gene and spatial structures to those in other vertebrates, and formed an independent clade in phylogeny. An expression pattern analysis revealed that hycfadd widely transcribed in various tissues, with the highest transcription level in the liver. Furthermore, expression profiling of hycfadd when intraperitoneally infected with 50 µL of exogenous Aeromonas hydrophila (2.0 × 107 CFU/mL) or Edwardsiella tarda (2.0 × 107 CFU/mL) within 48 h were significantly up-regulated in the kidney, spleen, liver and intestine. Important genes in the toll like receptor (tlr) 1-tlr2- myeloid differentiation primary response 88 (MyD88)-fadd-caspase (casp) 8 cascades of TLR signaling pathway in liver were significantly up-regulated after the A. hydrophila stimulation, suggesting that apoptosis through the TLR signaling pathway may have been triggered and activated, which were further verified in the liver, kidney, spleen, intestine and gill by a TUNEL assay. Overall, this study provides solid evidence for the bacterial induction of fadd-related apoptosis in teleosts.


Assuntos
Infecções Bacterianas , Peixes-Gato , Doenças dos Peixes , Animais , Aeromonas hydrophila/fisiologia , Edwardsiella tarda/genética , Baço/metabolismo , Proteínas de Peixes/química , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Mamíferos/metabolismo
3.
Fish Shellfish Immunol ; 134: 108579, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738947

RESUMO

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that can recognize pathogen-associated molecular patterns (PMPs) and play important roles in the innate immune system in vertebrates. In this study, we identified a teleost-specific tlr22 gene from yellow catfish (Pelteobagrus fulvidraco) and its immune roles in response to different pathogens were also determined. The open reading frame (ORF) of the tlr22 was 2892 bp in length, encoding a protein of 963 amino acids. Multiple protein sequences alignment, secondary and three-dimensional structure analyses revealed that TLR22 is highly conserved among different fish species. Phylogenetic analysis showed that the phylogenetic topology was divided into six families of TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11, and TLR22 subfamily was clustered into TLR11 family. Meanwhile, synteny and gene structure comparisons revealed functional and evolutionary conservation of the tlr22 gene in teleosts. Furthermore, tlr22 gene was shown to be widely expressed in detected tissues except barbel and eye, with highest expression level in liver. The transcription of tlr22 was significantly increased in spleen, kidney, liver and gill tissues at different timepoints after Poly I:C infection, suggesting TLR22 plays critical roles in defensing virus invasion. Similarly, the transcription of tlr22 was also dramatically up-regulated in spleen, kidney and gill tissues with different patterns after Aeromonas hydrophila infection, indicating that TLR22 is also involved in resisting bacteria invasion. Our findings will provide a solid basis for the investigation the immune functions of tlr22 gene in teleosts, as well as provide useful information for disease control and treatment for yellow catfish.


Assuntos
Peixes-Gato , Doenças dos Peixes , Animais , Regulação da Expressão Gênica , Aeromonas hydrophila/fisiologia , Filogenia , Receptores Toll-Like/genética , Poli I-C , Proteínas de Peixes/genética
4.
Fish Shellfish Immunol ; 119: 554-562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718124

RESUMO

Diseases caused by Vibrio harveyi in shrimps have gradually become one group of the most serious threats to shrimp production, while related molecular mechanisms of infections with Vibrio harveyi are still not known well in shrimps. Here, we performed proteomic sequencing of hepatopancreas in whiteleg shrimps (Litopenaeus vannamei) infected with exogenous Vibrio harveyi, and subsequent functional annotation and calculation of differentially expressed proteins (DEPs) in this study. A total of 145 DEPs were obtained, among them 36 were up-regulated and 109 were down-regulated after the infection. Meanwhile, our results showed that after the infection of Vibrio harveyi, expression levels of a variety of C-type lectins (CTLs) were changed significantly. In-depth functional domain analysis and spatial structure prediction of these CTLs revealed that amino acid sequences and spatial structures of the C-type lectin domain (CTLD) shared by the CTL-S and IML proteins were variant, suggesting differential functions between the two CTLs. In summary, various members of the CTL family have different epidemic responses to Vibrio harveyi infection, which provides a theoretical guidance for deep-going investigations on practical immunity reactions and pathogen infections in shrimps.


Assuntos
Penaeidae , Vibrioses , Vibrio , Animais , Proteínas de Artrópodes/genética , Lectinas Tipo C , Penaeidae/genética , Proteômica , Vibrioses/veterinária
5.
J Fish Dis ; 44(8): 1131-1145, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835515

RESUMO

Whiteleg shrimp is a widely cultured crustacean, but frequent disease outbreaks have decreased production and caused significant losses. Toll-like receptors (TLRs) comprise a large innate immune family that is involved in the innate immune response. However, understanding of their regulatory mechanism is limited. In this study, PacBio sequencing and Illumina sequencing were applied to the gill and hepatopancreas tissues of whiteleg shrimp and an integrated transcript gene set was established. The upregulation of Toll1, Toll2 and Toll3 transcripts in the hepatopancreas tissue of whiteleg shrimp after iridescent virus infection implies that these proteins are involved in the immune response to the virus; simultaneously, the TRAF6 and relish transcripts in the Toll pathway were also upregulated, implying that the Toll pathway was activated. We predicted the three-dimensional structure of the five Toll proteins in whiteleg shrimp and humans and constructed a phylogenetic tree of the Toll protein family. In addition, there was a large discrepancy of Toll1 between invertebrates and vertebrates, presumably because of the loss of Toll1 protein sequence during the evolution process from invertebrates to vertebrates. Our research will improve the cognition of Toll protein family in invertebrates in terms of evolution, structure and function and provide theoretical guidance for researchers in this field.


Assuntos
Proteínas de Artrópodes/genética , Evolução Molecular , Iridoviridae/fisiologia , Penaeidae/genética , Receptores Toll-Like/genética , Animais , Proteínas de Artrópodes/metabolismo , Penaeidae/virologia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Receptores Toll-Like/metabolismo , Transcrição Gênica
6.
World J Microbiol Biotechnol ; 36(12): 182, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33170386

RESUMO

Lactate are proved to be attractive electron donor for the production of n-caproic acid (CA) that is a high value-added fuel precursor and chemical feedstock, but little is known about molecular mechanism of lactate transformation. In the present study, the gene for L-lactate dehydrogenase (LDH, EC.1.1.1.27) from a Ruminococcaceae strain CPB6 was cloned and expressed in Escherichia coli BL21 (DE3) with plasmid pET28a. The recombinant LDH exhibited molecular weight of 36-38 kDa in SDS-PAGE. The purified LDH was found to have the maximal oxidation activity of 29.6 U/mg from lactate to pyruvate at pH 6.5, and the maximal reduction activity of 10.4 U/mg from pyruvate to lactate at pH 8.5, respectively. Strikingly, its oxidative activity predominates over reductive activity, leading to a 17-fold increase for the utilization of lactate in E. coli/pET28a-LDH than E. coli/pET28a. The CPB6 LDH gene encodes a 315 amino acid protein sharing 42.19% similarity with Clostridium beijerinckii LDH, and lower similarity with LDHs of other organisms. Significant difference were observed between the CPB6 LDH and C. beijerinckii and C. acetobutylicum LDH in the predicted tertiary structure and active center. Further, X-ray crystal structure analysis need to be performed to verify the specific active center of the CPB6 LDH and its role in the conversion of lactate into CA.


Assuntos
Clostridiales/enzimologia , Escherichia coli/crescimento & desenvolvimento , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Clostridiales/genética , Cristalografia por Raios X , Escherichia coli/genética , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/química , Ácido Láctico/metabolismo , Modelos Moleculares , Peso Molecular , Plasmídeos/genética , Estrutura Terciária de Proteína , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Animals (Basel) ; 13(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36670828

RESUMO

As a major mediator of cellular response to viral infection in mammals, Toll-like receptor 3 (TLR3) was proved to respond to double-stranded RNA (dsRNA). However, the molecular mechanism by which TLR3 functions in the viral infection response in teleosts remains to be investigated. In this study, the Toll-like receptor 3 gene of the hybrid yellow catfish was identified and characterized by comparative genomics. Furthermore, multiple sequence alignment, genomic synteny and phylogenetic analysis suggested that the homologous TLR3 genes were unique to teleosts. Gene structure analysis showed that five exons and four introns were common components of TLR3s in the 12 examined species, and interestingly the third exon in teleosts was the same length of 194 bp. Genomic synteny analysis indicated that TLR3s were highly conserved in various teleosts, with similar organizations of gene arrangement. De novo predictions showed that TLR3s were horseshoe-shaped in multiple taxa except for avian (with a round-shaped structure). Phylogenetic topology showed that the evolution of TLR3 was consistent with the evolution of the studied species. Selection analysis showed that the evolution rates of TLR3 proteins were usually higher than those of TLR3-TIR domains, indicating that the latter were more conserved. Tissue distribution analysis showed that TLR3s were widely distributed in the 12 tested tissues, with the highest transcriptions in liver and intestine. In addition, the transcription levels of TLR3 were significantly increased in immune-related tissues after infection of exogenous Aeromonas hydrophila and poly (I:C). Molecular docking showed that TLR3 in teleosts forms a complex with poly (I:C). In summary, our present results suggest that TLR3 is a pattern recognition receptor (PRR) gene in the immune response to pathogen infections in hybrid yellow catfish.

8.
Int J Biol Macromol ; 253(Pt 8): 127008, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844810

RESUMO

Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress.


Assuntos
Hemeproteínas , Oxigênio , Hemeproteínas/química , Simulação de Acoplamento Molecular , Filogenia , Bactérias/metabolismo , Fungos/metabolismo , Lipídeos , Óxido Nítrico/metabolismo
9.
Front Immunol ; 14: 1163781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056759

RESUMO

Toll-like receptor 1 (TLR1) mediates the innate immune response to a variety of microbes through recognizing cell wall components (such as bacterial lipoproteins) in mammals. However, the detailed molecular mechanism of TLR1 involved in pathogen immunity in the representative hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) has not been well studied. In the present study, we identified the TLR1 gene from the hybrid yellow catfish, and further comparative synteny data from multiple species confirmed that the TLR1 gene is highly conserved in teleosts. Phylogenetic analysis revealed distinguishable TLR1s in diverse taxa, suggesting consistence in evolution of the TLR1 proteins with various species. Structural prediction indicated that the three-dimensional structures of TLR1 proteins are relatively conserved among different taxa. Positive selection analysis showed that purifying selection dominated the evolutionary process of TLR1s and TLR1-TIR domain in both vertebrates and invertebrates. Expression pattern analysis based on the tissue distribution showed that TLR1 mainly transcribed in the gonad, gallbladder and kidney, and the mRNA levels of TLR1 in kidney were remarkably up-regulated after Aeromonas hydrophila stimulation, indicating that TLR1 participates in the inflammatory responses to exogenous pathogen infection in hybrid yellow catfish. Homologous sequence alignment and chromosomal location indicated that the TLR signaling pathway is very conserved in the hybrid yellow catfish. The expression patterns of TLR signaling pathway related genes (TLR1- TLR2 - MyD88 - FADD - Caspase 8) were consistent after pathogen stimulation, revealing that the TLR signaling pathway is triggered and activated after A. hydrophila infection. Our findings will lay a solid foundation for better understanding the immune roles of TLR1 in teleosts, as well as provide basic data for developing strategies to control disease outbreak in hybrid yellow catfish.


Assuntos
Peixes-Gato , Receptor 1 Toll-Like , Animais , Receptor 1 Toll-Like/genética , Aeromonas hydrophila/fisiologia , Peixes-Gato/genética , Filogenia , Receptores Toll-Like , Transdução de Sinais , Mamíferos
10.
Biosci Rep ; 41(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34338280

RESUMO

Coenzyme A transferases (CoATs) are important enzymes involved in carbon chain elongation, contributing to medium-chain fatty acid (MCFA) biosynthesis. For example, butyryl-CoA:acetate CoA transferase (BCoAT) is responsible for the final step of butyrate synthesis from butyryl-CoA. However, little is known about caproyl-CoA:acetate CoA-transferase (CCoAT), which is responsible for the final step of caproate synthesis from caproyl-CoA. In the present study, two CoAT genes from Ruminococcaceae bacterium CPB6 and Clostridium tyrobutyricum BEY8 were identified by gene cloning and expression analysis. Enzyme assays and kinetic studies were carried out using butyryl-CoA or caproyl-CoA as the substrate. CPB6-CoAT can catalyze the conversion of both butyryl-CoA into butyrate and caproyl-CoA into caproate, but its catalytic efficiency with caproyl-CoA as the substrate was 3.8-times higher than that with butyryl-CoA. In contrast, BEY8-CoAT had only BCoAT activity, not CCoAT activity. This demonstrated the existence of a specific CCoAT involved in chain elongation via the reverse ß-oxidation pathway. Comparative bioinformatics analysis showed the presence of a highly conserved motif (GGQXDFXXGAXX) in CoATs, which is predicted to be the active center. Single point mutations in the conserved motif of CPB6-CoAT (Asp346 and Ala351) led to marked decreases in the activity for butyryl-CoA and caproyl-CoA, indicating that the conserved motif is the active center of CPB6-CoAT and that Asp346 and Ala351 have a significant impact on the enzymatic activity. This work provides insight into the function of CCoAT in caproic acid biosynthesis and improves understanding of the chain elongation pathway for MCFA production.


Assuntos
Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Caproatos/metabolismo , Clonagem Molecular , Clostridium tyrobutyricum/enzimologia , Coenzima A-Transferases/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Clostridium tyrobutyricum/genética , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Modelos Moleculares , Mutação , Oxirredução , Filogenia , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
11.
BMC Ecol Evol ; 21(1): 72, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931054

RESUMO

BACKGROUND: Although almost all extant spider species live in terrestrial environments, a few species live fully submerged in freshwater or seawater. The intertidal spiders (genus Desis) built silk nests within coral crevices can survive submerged in high tides. The diving bell spider, Argyroneta aquatica, resides in a similar dynamic environment but exclusively in freshwater. Given the pivotal role played by mitochondria in supplying most energy for physiological activity via oxidative phosphorylation and the environment, herein we sequenced the complete mitogenome of Desis jiaxiangi to investigate the adaptive evolution of the aquatic spider mitogenomes and the evolution of spiders. RESULTS: We assembled a complete mitogenome of the intertidal spider Desis jiaxiangi and performed comparative mitochondrial analyses of data set comprising of Desis jiaxiangi and other 45 previously published spider mitogenome sequences, including that of Argyroneta aquatica. We found a unique transposition of trnL2 and trnN genes in Desis jiaxiangi. Our robust phylogenetic topology clearly deciphered the evolutionary relationships between Desis jiaxiangi and Argyroneta aquatica as well as other spiders. We dated the divergence of Desis jiaxiangi and Argyroneta aquatica to the late Cretaceous at ~ 98 Ma. Our selection analyses detected a positive selection signal in the nd4 gene of the aquatic branch comprising both Desis jiaxiangi and Argyroneta aquatica. Surprisingly, Pirata subpiraticus, Hypochilus thorelli, and Argyroneta aquatica each had a higher Ka/Ks value in the 13 PCGs dataset among 46 taxa with complete mitogenomes, and these three species also showed positive selection signal in the nd6 gene. CONCLUSIONS: Our finding of the unique transposition of trnL2 and trnN genes indicates that these genes may have experienced rearrangements in the history of intertidal spider evolution. The positive selection signals in the nd4 and nd6 genes might enable a better understanding of the spider metabolic adaptations in relation to different environments. Our construction of a novel mitogenome for the intertidal spider thus sheds light on the evolutionary history of spiders and their mitogenomes.


Assuntos
Genoma Mitocondrial , Aranhas , Animais , Sequência de Bases , Genoma Mitocondrial/genética , Filogenia , Seda/genética , Aranhas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA