RESUMO
Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1-3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.
RESUMO
How the dorsal-ventral axis of the vertebrate jaw, particularly the position of tooth initiation site, is established remains a critical and unresolved question. Tooth development starts with the formation of the dental lamina, a localized thickened strip within the maxillary and mandibular epithelium. To identify transcriptional regulatory networks (TRN) controlling the specification of dental lamina from the naïve mandibular epithelium, we utilized Laser Microdissection coupled low-input RNA-seq (LMD-RNA-seq) to profile gene expression of different domains of the mandibular epithelium along the dorsal-ventral axis. We comprehensively identified transcription factors (TFs) and signaling pathways that are differentially expressed along mandibular epithelial domains (including the dental lamina). Specifically, we found that the TFs Sox2 and Tfap2 (Tfap2a/Tfap2b) formed complimentary expression domains along the dorsal-ventral axis of the mandibular epithelium. Interestingly, both classic and novel dental lamina specific TFs-such as Pitx2, Ascl5 and Zfp536-were found to localize near the Sox2:Tfap2a/Tfap2b interface. To explore the functional significance of these domain specific TFs, we next examined loss-of-function mouse models of these domain specific TFs, including the dental lamina specific TF, Pitx2, and the ventral surface ectoderm specific TFs Tfap2a and Tfap2b. We found that disruption of domain specific TFs leads to an upregulation and expansion of the alternative domain's TRN. The importance of this cross-repression is evident by the ectopic expansion of Pitx2 and Sox2 positive dental lamina structure in Tfap2a/Tfap2b ectodermal double knockouts and the emergence of an ectopic tooth in the ventral surface ectoderm. Finally, we uncovered an unappreciated interface of mesenchymal SHH and WNT signaling pathways, at the site of tooth initiation, that were established by the epithelial domain specific TFs including Pitx2 and Tfap2a/Tfap2b. These results uncover a previously unknown molecular mechanism involving cross-repression of domain specific TFs including Pitx2 and Tfap2a/Tfap2b in patterning the dorsal-ventral axis of the mouse mandible, specifically the regulation of tooth initiation site.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox PITX2 , Proteínas de Homeodomínio , Mandíbula , Fatores de Transcrição SOXB1 , Fator de Transcrição AP-2 , Fatores de Transcrição , Animais , Camundongos , Linhagem da Célula/genética , Epitélio/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mandíbula/metabolismo , Odontogênese/genética , Transdução de Sinais , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Dente/metabolismo , Dente/crescimento & desenvolvimento , Dente/embriologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Tree peony black spot (TPBS), mainly caused by Alternaria suffruticosae, is a common leaf disease on the ornamental peony, which poses a great threat to the flower buds in the current year and the flowering quality in the next year. However, there is only one fungicide registered for the control of this disease, difenoconazole. In order to avoid the severe problem of pathogen resistance caused by long-term use of difenoconazole, it is necessary to screen more chemical fungicides for the prevention and control of TPBS. In this study, the biological activities of flutolanil, phenamacril, pyraclostrobin, and boscalid on mycelial growth, conidial germination, germ tube elongation, and sporulation quantity of A. suffruticosae were determined, and the field control efficacy was tested to evaluate the preventive and therapeutic activities. Difenoconazole was used as a control simultaneously. The results showed that pyraclostrobin had the strongest inhibitory effects on the conidial germination, mycelium growth, germ tube elongation, and sporulation quantity, with the average EC50 values of 0.0517, 0.5343, 0.0008, and 0.8068 µg/ml, respectively. The inhibitory activity of flutolanil on the four developmental stages of A. suffruticosae was weaker than that of the other three fungicides. Compared with flutolanil, boscalid, the other succinate dehydrogenase inhibitor, had more strong inhibitory effects on the mycelial growth and sporulation quantity, with the average EC50 values of 3.8603 and 1.4760 µg/ml, respectively. Phenamacril had a moderate inhibitory level and had more inhibitory activity on conidial germination and germ tube elongation, with the average EC50 values of 31.5349 and 5.2597 µg/ml, respectively. All of the four fungicides had no significant effects on the shape of spores and germ tubes. The control fungicide difenoconazole had the strongest inhibitory activity on mycelial growth, and the average EC50 value was only 0.3297 µg/ml. However, its inhibitory activity on the other three growth stages was not high. In the field trials, pyraclostrobin had high control efficacy on TPBS even at low concentrations, reaching a minimum of 62.6293%, which was higher than that of difenoconazole. The other three fungicides had higher control efficacy at high concentrations but decreased significantly at low concentrations. Considering the dosage and control efficacy, pyraclostrobin was the first choice for the control of TPBS. Pyraclostrobin is the preferred alternative fungicide to difenoconazole for the prevention and control of TPBS in production.
Assuntos
Alternaria , Dioxolanos , Fungicidas Industriais , Doenças das Plantas , Estrobilurinas , Fungicidas Industriais/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/fisiologia , Alternaria/crescimento & desenvolvimento , Estrobilurinas/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Dioxolanos/farmacologia , Compostos de Bifenilo/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Carbamatos/farmacologia , Piridinas/farmacologia , Alanina/farmacologia , Alanina/análogos & derivados , Folhas de Planta/microbiologia , Niacinamida/análogos & derivados , Norbornanos , Pirazóis , TriazóisRESUMO
Photocatalytic CO2reduction is considered to be an appealing way of alleviating environmental pollution and energy shortages simultaneously under mild condition. However, the activity is greatly limited by the poor separation of the photogenerated carriers. Ion doping is a feasible strategy to facilitate the charge transfer. In this work, Ni-doped Bi4O5I2photocatalyst is successfully fabricated using a one-pot hydrothermal method. A few doping levels appear in the energy band of Bi4O5I2after Ni doping, which are used as springboards for electrons transition, thus promoting photoexcited electrons and holes separation. As a consequence, a remarkably enhanced yield of CO and CH4(6.2 and 1.9µmol g-1h-1) is obtained over the optimized Bi4O5I2-Ni15, which is approximately 2.1 and 3.8 times superior to pure Bi4O5I2, respectively. This work may serve as a model for the subsequent research of Bi-based photocatalysts to implement high-performance CO2photoreduction.
RESUMO
Fusarium pseudograminearum is the dominant pathogen causing Fusarium crown rot (FCR) of wheat. Phenamacril is a 2-cyanoacrylate fungicide, having a control effect on diseases caused by Fusarium spp. The objective of this study was to investigate the inhibitory effect of phenamacril on F. pseudograminearum and its control efficacy against FCR. The results showed that phenamacril had a strong inhibitory effect on the mycelial growth of F. pseudograminearum, EC50 values of phenamacril to 63 tested strains were in the range of 0.0998 to 0.5672 µg/ml, and the average EC50 value was 0.3403 ± 0.0872 µg/ml and could be used as the baseline sensitivity of F. pseudograminearum to phenamacril. Phenamacril reduced the germination rate of conidia of F. pseudograminearum, and the EC50 value was 5.0273 to 26.4814 µg/ml. In addition, we found that phenamacril had a teratogenic effect on conidia and blastotubules, which increased the ratio of conidial germination from the middle cells and showed high efficacy on the sporulation quantity of F. pseudograminearum with an EC50 value in the range of 0.0770 to 0.1064 µg/ml. There was no significant correlation between the sensitivity of F. pseudograminearum to phenamacril and its sensitivity to fludioxonil, carbendazim, tebuconazole, and kresoxim-methyl. In vitro and greenhouse assays showed that the treatment with 0.125 µl of active ingredient per gram recorded the best control effect on wheat crown rot, reaching 87.8 and 77.3%, respectively. In two experimental sites in Luoyang, phenamacril also had great control effect against FCR, reaching 83.9%. It was proven that phenamacril has a superior control effect against FCR. This study has laid a foundation for the study of the mechanism of action of phenamacril against F. pseudograminearum and provided a theoretical basis for the application of phenamacril to control FCR.
Assuntos
Fusarium , Triticum , Doenças das Plantas/prevenção & controle , Cianoacrilatos/farmacologia , Crescimento e DesenvolvimentoRESUMO
BACKGROUND: Postoperative delirium (POD) is a critical complication in patients accepting colon carcinoma surgery. Neostigmine, as a cholinesterase inhibitor, can enhance the transmission of cholinergic transmitters in synaptic space, and play an important role in maintaining the normal level of cognition, attention and consciousness. The objective of this study was to investigate the effect of neostigmine on POD and clinical prognosis. METHODS: A randomized, double-blind controlled trial was implemented in Qingdao Municipal Hospital Affiliated to Qingdao University. A total of 454 patients aged 40 to 90 years old accepted colon carcinoma surgery were enrolled between June 7, 2020, and June 7, 2021, with final follow-up on December 8, 2021. Patients were randomly assigned to two groups: the neostigmine group (group N) and the placebo group (group P), the patients in group N were injected with 0.04 mg/kg neostigmine and 0.02 mg/kg atropine intravenously. The primary endpoint was the incidence of POD, researchers evaluated the occurrence of POD by the Confusion Assessment Method (CAM) twice daily (at 10 a.m. and 2 p.m.) during the first 7 postoperative days, POD severity was assessed by the Memorial Delirium Assessment Scale (MDAS). The secondary endpoints were the extubating time, postanesthesia care unit (PACU) time, the incidence of various postoperative complications, length of hospital stays, and 6 months postoperative mortality. RESULTS: The incidence of POD was 20.20% (81/401), including 19.39% (38/196) in group N and 20.98% (43/205) in group P. There was no significant statistical significance in the incidence of POD between group N and group P (P > 0.05); Compared to group P, the extubating time and PACU time in group N were significantly reduced (P < 0.001), the incidence of postoperative pulmonary complications (POPCs) decreased significantly in group N (P < 0.05), while no significant differences were observed in postoperative hospital stay and mortality in 6 months between the two groups (P > 0.05). CONCLUSION: For patients accepted colon carcinoma surgery, neostigmine did not significantly reduce the incidence of POD, postoperative mortality and postoperative hospital stay, while it indeed reduced the extubating time, PACU time and the incidence of POPCs. TRIAL REGISTRATION: The randomized, double-blind, controlled trial was registered retrospectively at www.chictr.org.cn on 07/06/2020 (ChiCTR2000033639).
Assuntos
Carcinoma , Delírio , Adulto , Idoso , Idoso de 80 Anos ou mais , Colo , Delírio/epidemiologia , Delírio/etiologia , Delírio/prevenção & controle , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , Neostigmina/uso terapêutico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Estudos RetrospectivosRESUMO
BACKGROUND: Radial artery cannulation is a crucial investigative procedure for measuring patients' blood pressure invasively and serial blood gases. However, radial artery cannulation can be challenging for medical residents, and it is necessary to establish a facile and straightforward teaching strategy. This study aimed to evaluate the efficiency of acoustic shadowing-facilitated ultrasound guidance on radial artery cannulation teaching for medical residents. METHODS: A total of 116 medical postgraduates who underwent standardized residency training programs in the Department of Anesthesiology were randomly divided into a new ultrasound-guided teaching group and a traditional ultrasound-guided teaching group. In the new ultrasound-guided teaching group, radial artery puncture technique was taught by acoustic shadowing-facilitated ultrasound guidance. The training included both theoretical and practical components. After the training, the success rate of the first puncture attempt, the success rate of the catheterization, the ultrasonic positioning time, and the catheterization time of the two groups were compared in a unified manner. A questionnaire on the subjective evaluation of the various aspects of the program by participants was conducted at the end of the training period. RESULTS: The study included 101 medical residents. The success rate for radial artery puncture at the first attempt in the new ultrasound-guided teaching group was 78.43%. It was significantly higher than that of the traditional ultrasound-guided group (58.00%, odds ratio = 0.380; 95% CI = 0.159 to 0.908; p = 0.027). The success rate for the first arterial catheterization in the new ultrasound-guided teaching group was significantly higher than that of the traditional ultrasound-guided group (74.51% vs. 52.00%, odds ratio = 0.371; 95% CI = 0.160 to 0.858; p = 0.019). The ultrasonic positioning time and catheterization time in minutes in the new ultrasound-guided teaching group were significantly shorter than that of the traditional ultrasound-guided group (14.36 ± 3.31 vs. 18.02 ± 4.95, p < 0.001; 10.43 ± 2.38 vs. 14.78 ± 8.02, p = 0.012). However, no significant differences were observed in the incidence of local hematomas and teaching satisfaction scores between the two groups. CONCLUSION: Acoustic shadowing facilitates ultrasound-guided radial artery puncture and catheterization is beneficial in the standardized training and teaching of residents. It improves the success rate of the first attempt at radial artery puncture and catheterization and shortens the time of ultrasound location and catheterization. TRIAL REGISTRATION: Registered in the Chinese Clinical Trial Registry on 28 May 2021. REGISTRATION NUMBER: ChiCTR2100046833 .
Assuntos
Cateterismo Periférico , Artéria Radial , Acústica , Cateterismo Periférico/métodos , Humanos , Punções/métodos , Artéria Radial/diagnóstico por imagem , Ultrassonografia de Intervenção/métodosRESUMO
The reconfigurability of the electrical heterostructure featured with external variables, such as temperature, voltage, and strain, enabled electronic/optical phase transition in functional layers has great potential for future photonics, computing, and adaptive circuits. VO2 has been regarded as an archetypal phase transition building block with superior metal-insulator transition characteristics. However, the reconfigurable VO2-based heterostructure and the associated devices are rare due to the fundamental challenge in integrating high-quality VO2 in technologically important substrates. In this report, for the first time, we show the remote epitaxy of VO2 and the demonstration of a vertical diode device in a graphene/epitaxial VO2/single-crystalline BN/graphite structure with VO2 as a reconfigurable phase-change material and hexagonal boron nitride (h-BN) as an insulating layer. By diffraction and electrical transport studies, we show that the remote epitaxial VO2 films exhibit higher structural and electrical quality than direct epitaxial ones. By high-resolution transmission electron microscopy and Cs-corrected scanning transmission electron microscopy, we show that a graphene buffered substrate leads to a less strained VO2 film than the bare substrate. In the reconfigurable diode, we find that the Fermi level change and spectral weight shift along with the metal-insulator transition of VO2 could modify the transport characteristics. The work suggests the feasibility of developing a single-crystalline VO2-based reconfigurable heterostructure with arbitrary substrates and sheds light on designing novel adaptive photonics and electrical devices and circuits.
RESUMO
Previous studies have suggested that immune system development and weaning stress are closely related to the maturation of gut microbiota. The early-life period is a "window of opportunity" for microbial colonization, which potentially has a critical impact on the development of the immune system. Fecal microbiota transplantation (FMT) and probiotics are often used to regulate gut microbial colonization. This study aims to test whether early intervention with FMT using fecal microbiota from gestation sows combined with Clostridium butyricum and Saccharomyces boulardii (FMT-CS) administration could promote the maturation of gut microbiota and development of immune system in piglets. Piglets were assigned to control (n = 84) and FMT-CS treatment (n = 106), which were treated with placebo and bacterial suspension during the first three days after birth, respectively. By 16S rRNA gene sequencing, we found that FMT-CS increased the α-diversity and reduced the unweighted UniFrac distances of the OTU community. Besides, FMT-CS increased the relative abundance of beneficial bacteria, while decreasing that of opportunistic pathogens. FMT-CS also enhanced the relative abundance of genes related to cofactors and vitamin, energy, and amino acid metabolisms during the early-life period. ELISA analysis revealed that FMT-CS gave rise to the plasma concentrations of IL-23, IL-17, and IL-22, as well as the plasma levels of anti-M.hyo and anti-PCV2 antibodies. Furthermore, the FMT-CS-treated piglets showed decreases in inflammation levels and oxidative stress injury, and improvement of intestinal barrier function after weaning as well. Taken together, our results suggest that early-life intervention with FMT-CS could promote the development of innate and adaptive immune system and vaccine efficacy, and subsequently alleviate weaning stress through promoting the maturation of gut microbiota in piglets.
Assuntos
Clostridium butyricum/imunologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/imunologia , Probióticos/farmacologia , Saccharomyces boulardii/imunologia , Estresse Fisiológico , Animais , Animais Recém-Nascidos , Citocinas/imunologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia , Suínos , DesmameRESUMO
BACKGROUND AND AIM: ß-Arrestins (ß-arrs) are regulators and mediators of G protein-coupled receptor signaling that are functionally involved in inflammation. Nuclear factor-κB p65 (NF-κBp65) activation has been observed early in the onset of pancreatitis. However, the effect of ß-arrs in acute pancreatitis (AP) is unclear. The aim of this study is to investigate whether ß-arrs are involved in AP through activation of NF-κBp65. METHODS: Acute pancreatitis was induced by either caerulein injection or choline-deficient supplemented with ethionine diet (CDE). ß-arr1 wild-type and ß-arr1 knockout mice were used in the experiment. The survival rate was calculated in the CDE model mice. Histological and western blot analyses were performed in the caerulein model. Inflammatory mediators were detected by real-time polymerase chain reaction in the caerulein-induced AP mice. Furthermore, AR42J and PANC-1 cell lines were used to further study the effects of ß-arr1 in caerulein-induced pancreatic cells. RESULTS: ß-Arr1 but not ß-arr2 is significantly downregulated in caerulein-induced AP in mice. Targeted deletion of ß-arr1 notably upregulated expression of the pancreatic inflammatory mediators including tumor necrosis factor α and interleukin 1ß as well as interleukin 6 and aggravated AP in caerulein-induced mice. ß-Arr1 deficiency increased mortality in mice with CDE-induced AP. Further, ß-arr1 deficiency enhanced caerulein-induced phosphorylation of NF-κBp65 both in vivo and in vitro. CONCLUSION: ß-Arr1 alleviates AP via repression of NF-κBp65 activation, and it is a potentially therapeutic target for AP.
Assuntos
Pancreatite/genética , Pancreatite/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Doença Aguda , Animais , Linhagem Celular Tumoral , Ceruletídeo , Deficiência de Colina/complicações , Modelos Animais de Doenças , Regulação para Baixo , Etionina , Feminino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos Knockout , Pancreatite/induzido quimicamente , Pancreatite/patologia , Fosforilação , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.
RESUMO
One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensurate epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. The unique photon transport in the one-dimensional structure has been studied in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.
RESUMO
OBJECTIVE: The purpose of this study was to thoroughly assess the relevance of circular RNAs (circRNAs) in the diagnosis and prognosis of esophageal squamous cell carcinoma (ESCC)ï¼ and design a systematic review and meta-analysis. METHODS: Using Stata 14.0 software, a meta-analysis was carried out by looking for pertinent studies up to February 20, 2023, in the online databases PubMed, Embase, Web of Science, and CNKI. The clinicopathologic and prognostic data were evaluated using the combined advantage ratio (OR) and combined hazard ratio (HR), respectively. The threshold effects and publication bias were quantified using Spearman's correlation and the Deeks funnel plot asymmetry tests, respectively. RESULTS: A total of 36 pertinent studies with a literature quality score of 7 or above were included in this study. Of them, 22 papers dealt with clinicopathological characterization, 15 dealt with prognostic analysis, and 13 dealt with diagnostic analysis. The findings demonstrated that high expression of upregulated circRNAs was associated with worse clinicopathological features (tumor size: OR=3.61, 95% CI:1.45-5.78; TNM stage: OR=2.12, 95% CI:1.41-2.83; lymph node metastasis: OR=2.87, 95% CI:1.67-4.07) and worse OS (HR=1.49, 95% CI:1.26-1.77). High downregulated circRNAs expression was linked to improved clinicopathologic characteristics (TNM staging: OR=0.35, 95% CI:0.13- 0.95) and longer survival (HR=0.48, 95% CI:0.27-0.84); combined sensitivity was 0.77 (95% CI: 0.71-0.82), specificity was 0.80 (95% CI:0.74-0.86), and area under the subject operating characteristic curve (AUC) was 0.86 (95% CI:0.82- 0.88). CONCLUSION: CircRNAs are useful for ESCC patient diagnosis and prognosis, and they are anticipated to be unique potential biomarkers for ESCC clinical diagnosis.
Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Circular , Humanos , RNA Circular/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/mortalidade , Prognóstico , Biomarcadores Tumorais/genéticaRESUMO
Against the backdrop of the gradual advancement of China's electricity market reform, the number of Power Trading Companies in China has been increasing year by year, and as of October 2022, the number has reached more than 10,000. As an important hub connecting the electricity market and users, electricity retailers face double risks from downstream user load fluctuations and electricity market price fluctuations. Therefore, a reasonable power purchase and sale strategy is very important for an electricity retailer. In this study, a block bidding mechanism is adopted to optimize the clearing of the medium-to long-term market and a DA-RBF neural network is established for spot electricity price forecasting model based on numerical feature similarity to improve the accuracy of electricity price forecasting. Furthermore, the model considers the differences in user demand responses and investigates the optimal power purchase and sale strategy, guided by differentiated time-of-use electricity pricing. The case study analysis demonstrated that the proposed power purchase and sale optimization strategy yields favorable results, improving profitability and enhancing the stability of the power system.
RESUMO
The absolute structures of a pair of infinite Na(H2O)4+-connected ε-Keggin-Al13 species (Na-ε-K-Al13) that were inversion structures and mirror images of each other were determined. Single crystals obtained by adding A2SO4 (A = Li, Na, K, Rb, or Cs) solution to NaOH-hydrolyzed AlCl3 solution were subjected to X-ray structure analyses. The statistical results for 36 single crystals showed that all the crystals had almost the same unit cell parameter, belonged to the same F4Ì 3m space group, and possessed the same structural formula [Na(H2O)4AlO4Al12(OH)24(H2O)12](SO4)4·10H2O. However, the crystals had two inverse absolute structures (denoted A and B), which had a crystallization ratio of 1:1. From Li+ to Cs+, with increasing volume of the cation coexisting in the mother solution, the degree of disorder of the four H2O molecules in the Na(H2O)4+ hydrated ion continuously decreased; they became ordered when the cation was Cs+. Absolute structures A and B are the first two infinite aluminum polycations connected by statistically occupied [(Na1/4)4(H2O)4]+ hydrated ions. The three-dimensional structure of the infinite Na-ε-K-Al13 species can be regarded as the assembly of finite ε-K-Al13 species linked by [(Na1/4)4(H2O)4]+ in a 1:1 ratio. In this assembly, each [(Na1/4)4(H2O)4]+ is connected to four ε-K-Al13 and each ε-K-Al13 is also connected to four [(Na1/4)4(H2O)4]+ in tetrahedral orientations to form a continuous rigid framework structure, which has an inverse spatial orientation between absolute structure A and B. This discovery clarifies that the ε-K-Al13 (or ε-K-GaAl12) species in Na[MO4Al12(OH)24(H2O)12](XO4)4·nH2O (M = Al, Ga; X = S, Se; n = 10-20) exists as discrete groups and deepens understanding of the formation and evolution process of polyaluminum species in forcibly hydrolyzed aluminum salt solution. The reason why Na+ statistically occupies the four sites was examined, and a formation and evolution mechanism of the infinite Na-ε-K-Al13 species was proposed.
RESUMO
Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.
RESUMO
Deep learning relies on learning from extensive data to generate prediction results. This approach may inadvertently capture spurious correlations within the data, leading to models that lack interpretability and robustness. Researchers have developed more profound and stable causal inference methods based on cognitive neuroscience. By replacing the correlation model with a stable and interpretable causal model, it is possible to mitigate the misleading nature of spurious correlations and overcome the limitations of model calculations. In this survey, we provide a comprehensive and structured review of causal inference methods in deep learning. Brain-like inference ideas are discussed from a brain-inspired perspective, and the basic concepts of causal learning are introduced. The article describes the integration of causal inference with traditional deep learning algorithms and illustrates its application to large model tasks as well as specific modalities in deep learning. The current limitations of causal inference and future research directions are discussed. Moreover, the commonly used benchmark datasets and the corresponding download links are summarized.
RESUMO
Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA-disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA-disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA's ability in discovering known relationships between circRNA candidates and diseases.
RESUMO
The development of bifunctional photocatalysts for enhancing hydrogen (H2) and hydrogen peroxide (H2O2) production from water is essential in addressing environmental and energy issues. However, the practical implementation of photocatalytic technology is still constrained by the inadequate separation of photo-generated charge carriers. Herein, potassium (K) atoms are introduced into the interlayers of graphitic carbon nitride (g-C3N4) with a hollow hexagonal structure (K-TCN) and are coordinated with N atoms in adjacent layers. The presence of K-N coordination serves as a layer bridge, facilitating the separation of charge carriers. The hollow hexagonal structure reduces the distance over which photogenerated electrons migrate to the surface, thereby enhancing the reaction kinetics. Consequently, the optimized K-TCN exhibits a dramatically improved photocatalytic H2 (941.6 µmol g-1h-1 with platinum (Pt) as the cocatalyst) and H2O2 (347.6 µmol g-1h-1) generation as compared to hollow g-C3N4 (TCN) and bulk g-C3N4 nanosheet (CN) without K-N bridge under visible light irradiation. The unique design holds promising potential for developing highly efficient bifunctional photocatalysts towards producing renewable fuels and value-added chemicals.
RESUMO
Strongly correlated electron materials harbor interesting materials physics, such as high-Tc superconductivity, colossal magnetoresistance, and metal-insulator transition. These physical properties can be greatly influenced by the dimensionality and geometry of the hosting materials and their interaction strengths with underlying substrates. In a classic strongly correlated oxide vanadium sesquioxide (V2O3), the coexistence of a metal-insulator and paramagnetic-antiferromagnetic transitions at â¼150 K makes this material an excellent platform for exploring basic physics and developing future devices. So far, most studies have been focused on epitaxial thin films in which the strongly coupled substrate has a pronounced effect on V2O3, leading to the observations of intriguing phenomena and physics. In this work, we unveil the kinetics of a metal-insulator transition of V2O3 single-crystal sheets at nano and micro scales. We show the presence of triangle-like alternating metal/insulator phase patterns during phase transition, which is drastically different from the epitaxial film. The observation of single-stage metal-insulator transition in V2O3/graphene compared to the multistage in V2O3/SiO2 evidence the importance of sheet-substrate coupling. Harnessing the freestanding form of the V2O3 sheet, we show that the phase transition of V2O3 sheet can generate a large dynamic strain to monolayer MoS2 and tune its optical property based on the MoS2/V2O3 hybrid structure. The demonstration of the capability in tuning phase transition kinetics and phase patterns using designed hybrid structure of varied sheet-substrate coupling strengths suggests an effective knob in the design and operation of emerging Mott devices.