RESUMO
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg0 by the Ag-Hg0 amalgamation mechanism. An Hg0 capture capacity as high as 13.2 mg·g-1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg0 removal efficiency as high as 91.6% with a Hg0 capture capacity of 457.3 µg·g-1. More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg0 capture from coal-fired flue gases.
Assuntos
Carvão Mineral , Nanocompostos , Prata , Adsorção , Gases , Mercúrio , Nanopartículas Metálicas , Centrais Elétricas , Dióxido de SilícioRESUMO
This research investigates the formation mechanism of soot and particulate matter during the pyrolysis and gasification of waste derived from Municipal Solid Waste (MSW) in a laboratory scale drop tube furnace. Compared with CO2 gasification atmosphere, more ultrafine particles (PM0.2, aerodynamic diameter less than 0.2 µm) were generated in N2 atmosphere at 1200â, which were mainly composed of polycyclic aromatic hydrocarbons (PAHs), graphitic carbonaceous soot and volatile alkali salts. High reaction temperatures promote the formation of hydrocarbon gaseous products and their conversion to PAHs, which ultimately leads to the formation of soot particles. The soot particles generated by waste derived from MSW pyrolysis and gasification both have high specific surface area and well-developed pore structure. Compared with pyrolysis, the soot generated by gasification of waste derived from MSW had smaller size and higher proportion of inorganic components. The higher pyrolysis temperature led to the collapse of the mesoporous structure of submicron particles, resulting in a decrease in total pore volume and an increase in specific surface area. Innovatively, this research provides an explanation for the effect of reaction temperature/ CO2 on the formation pathways and physicochemical properties of soot and fine particulate matter.
Assuntos
Temperatura Alta , Material Particulado , Pirólise , Resíduos Sólidos , Fuligem , Material Particulado/análise , Material Particulado/química , Resíduos Sólidos/análise , Fuligem/análise , Fuligem/química , Eliminação de Resíduos/métodos , Incineração/métodos , Dióxido de Carbono/análise , Dióxido de Carbono/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Tamanho da PartículaRESUMO
In light of the substantial global production of biomass waste, effective waste management and energy recovery solutions are of paramount importance. Hydrothermal liquefaction (HTL) and anaerobic digestion (AD) have emerged as innovative techniques for converting biomass waste into valuable resources. Their integration creates a synergistic framework that mitigates inherent limitations, leading to improved efficiency, enhanced product quality, and the comprehensive utilization of biomass. This review paper investigates the integration of HTL and AD, highlighting its significance and potential benefits as well as the optimal sequencing (HTL followed by AD and AD followed by HTL). The review encompasses experimental procedures, factors influencing both sequencing options, energy recovery characterizations, final product outcomes, as well as toxicological assessments and discussions on reduction. Additionally, it delves into the transition towards a circular bioeconomy and discusses the challenges and opportunities intrinsic to these processes. The findings presented in this review offer valuable insights to shape future research in this evolving field.
Assuntos
Biomassa , Gerenciamento de Resíduos , Anaerobiose , Gerenciamento de Resíduos/métodos , BiocombustíveisRESUMO
α-MnO2 was in-situ supported onto silica coated magnetite nanoparticles (MagS-Mn) to study the adsorption and oxidation of Hg0 as well as the effecting patterns of SO2 and O2 on Hg0 removal. MagS-Mn showed Hg0 removal capacity of 1122.6 µg/g at 150 °C with the presence of SO2. Hg0 adsorption and oxidation efficiencies were 2.4% and 90.6%, respectively. Hg0 removal capability deteriorated at elevated temperatures. Surface oxygen and manganese chemistry analysis indicated that SO2 inhibited the Hg0 removal through consumption of adsorbed oxygen and reduction of high valence manganese. This inhibiting effect was observed to be counteracted by O2 at lower temperatures. O2 tended to compete with SO2 for active sites and further create additional adsorbed oxygen sites for Hg0 surface reaction via surface dissociative adsorption rather than replenish the active sites consumed by SO2. The high valence manganese was also preserved by O2 which was essential to Hg0 oxidation. The intervention of O2 in the inhibition of SO2 on Hg0 removal was weakened at temperatures higher than 250 °C. Aa a result, Hg0 tends to be catalytic oxidized in the condition of low reaction temperatures and with the presence of O2 over α-MnO2 oriented composites.
RESUMO
Anaerobic digestion is a popular unit operation in wastewater treatment to degrade organic contaminants, thereby generating biogas (methane-rich gas stream). Catalytic decomposition of the biogas could be a promising upcycling approach to produce renewable hydrogen and sequester carbon in the form of carbon nanomaterials (CNMs). Biosolids are solid waste generated during the wastewater treatment process, which can be valorised to biochar via pyrolysis. This work demonstrates the use of biosolids-derived biochar compared with ilmenite as catalysts for biogas decomposition to hydrogen and CNMs. Depending on the reaction time, biosolids-derived biochar achieved a CH4 and CO2 conversion of 50-70 % and 70-90 % at 900 °C with a weight hourly space velocity (WHSV) of 1.2 Lg-1h-1. The high conversion rate was attributed to the formation of amorphous carbon on the biochar surface, where the carbon deposits acted as catalysts and substrates for the further decomposition of CH4 and CO2. Morphological characterisation of biochar after biogas decomposition revealed the formation of high-quality carbon nanospheres (200-500 nm) and carbon nanofibres (10-100 nm) on its surface. XRD pattern and Raman spectroscopy also signified the presence of graphitic structures with ID/IG ratio of 1.19, a reduction from 1.33 in the pristine biochar. Finally, the produced CNM-loaded biochar was tested for PFAS adsorption from contaminated wastewater. A removal efficiency of 79 % was observed for CNM-coated biochar which was 10-60 % higher than using biochar and ilmenite alone. This work demonstrated an integrated approach for upcycling waste streams generated in wastewater treatment facilities.
Assuntos
Biocombustíveis , Fluorocarbonos , Biossólidos , Dióxido de Carbono , Adsorção , Carvão Vegetal/química , Águas Residuárias , Carbono/química , HidrogênioRESUMO
Mercury is an extremely toxic element that is primarily released by anthropogenic activities and natural sources. Controlling Hg emissions, especially from coal combustion flue gas, is of practical importance in protecting the environment and preventing human health risks. In the present work, three metal oxides (MnO2, CuO, and ZnO) were loaded on graphene oxide (GO) sorbents (designated as MnO2-GO, CuO-GO, and ZnO-GO). All three adsorbents were successfully synthesized and were well characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the metal oxide nanoparticles (NPs) successfully decorated the GO. The elemental Hg adsorption capabilities of the three sorbents were subsequently evaluated using an in-house built setup for cold vapour atomic fluorescence spectrophotometry (CVAFS) with argon as the carrier gas for mercury detection. The testing temperature ranged from 50°C to 200°C at intervals of 50°C. MnO2-GO showed an excel lent Hg0 adsorption capacity via chemisorption from 50 to 150°C and a mercury removal efficiency as high as 85% at 200°C, indicating that the MnO2-NP-modified GO is applicable for enhancing gas-phase elemental mercury removal. However, neither CuO-GO nor ZnO-GO performed well. This work provides useful insights into the development of novel sorbent materials for the elemental mercury removal from flue gases.
Assuntos
Grafite , Mercúrio , Nanopartículas , Adsorção , ÓxidosRESUMO
Manganese oxides with different crystallographic structures were investigated for gas-phase elemental mercury removal. The inherent thermal regeneration performance and mechanism of α- and γ-MnO2 were studied. The manganese dioxides were found to possess a mercury removal efficiency of higher than 96% even after 120 min mercury exposure except for ß-MnO2 which removed much less mercury than Mn2O3. The α-MnO2 was found to have a higher recyclability of mercury capture and better durability for regeneration than γ-MnO2. During the first 1 h of exposure, α-MnO2 showed an excellent mercury capacity of 128 µg/g over 5 regeneration cycles. While for γ-MnO2, the mercury capacity of the fifth cycle was reduced to 68.74 µg/g, which is much lower than 131.42 µg/g for the first cycle. The microstructure of α-MnO2 was maintained throughout regeneration cycles due to its capability to retain lattice oxygen. In comparison, γ-MnO2 experienced reconstruction and phase transformation induced by oxygen vacancies due to lattice oxygen loss during regeneration process, leading to a degradation in mercury capture. The α-MnO2 oriented composite was found to be better developed into a regenerable catalytic sorbent for mercury removal from flue gases of coal-fired power plants.
RESUMO
A small fraction of the naphtha diluent used for oil sands processing escapes with tailings and supports methane (CH(4)) biogenesis in large anaerobic settling basins such as Mildred Lake Settling Basin (MLSB) in northern Alberta, Canada. Based on the rate of naphtha metabolism in tailings incubated in laboratory microcosms, a kinetic model comprising lag phase, rate of hydrocarbon metabolism and conversion to CH(4) was developed to predict CH(4) biogenesis and flux from MLSB. Zero- and first-order kinetic models, respectively predicted generation of 5.4 and 5.1 mmol CH(4) in naphtha-amended microcosms compared to 5.3 (+/-0.2) mmol CH(4) measured in microcosms during 46 weeks of incubation. These kinetic models also predicted well the CH(4) produced by tailings amended with either naphtha-range n-alkanes or BTEX compounds at concentrations similar to those expected in MLSB. Considering 25% of MLSB's 200 million m(3) tailings volume to be methanogenic, the zero- and first-order kinetic models applied over a wide range of naphtha concentrations (0.01-1.0 wt%) predicted production of 8.9-400 million l CH(4) day(-1) from MLSB, which exceeds the estimated production of 3-43 million l CH(4) day(-1). This discrepancy may result from heterogeneity and density of the tailings, presence of nutrients in the microcosms, and/or overestimation of the readily biodegradable fraction of the naphtha in MLSB tailings.
Assuntos
Metano/metabolismo , Modelos Teóricos , Alberta , Alcanos/metabolismo , Anaerobiose , Biodegradação Ambiental , Microbiologia Ambiental , Cinética , Petróleo/metabolismoRESUMO
This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertilization and mineral carbonation techniques are also covered. Underground injection and direct ocean dump are not covered.
Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Dióxido de Carbono , Centrais Elétricas , Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Carbono/química , Carbono/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Combustíveis Fósseis , Efeito EstufaRESUMO
Activated carbon injection has been proven to be an effective control technology of mercury emission from coal-fired power plants. Petroleum coke is a waste by-product of petroleum refining with large quantities readily available around the world. Due to its high inherent sulfur content, petroleum coke is an attractive raw material for developing mercury capture sorbent, converting a waste material to a value-added product of important environmental applications. In this study, petroleum coke was brominated by chemical-mechanical bromination. The brominated petroleum coke was characterized for thermal stability, mercury capture capacity, and potential mercury and bromine leaching hazards. Bromine loaded on the petroleum coke was found to be stable up to 200°C. Even after treating the brominated petroleum coke for 30min at 600°C, 1/3 bromine remained on the solid. The sorbent from bromination of sulfur-containing petroleum coke was shown to be a promising alternative to commercial brominated activated carbon for capture of elemental mercury from coal combustion flue gases.