Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
FASEB J ; 37(1): e22710, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520045

RESUMO

Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Mol Ther ; 31(7): 2056-2076, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905120

RESUMO

Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Proteína Beclina-1/metabolismo , Modelos Animais de Doenças , Glaucoma/genética , Glaucoma/terapia , Glaucoma/metabolismo , Apoptose/genética , Pressão Intraocular , Neuroserpina
3.
Acta Neuropathol ; 145(4): 409-438, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773106

RESUMO

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid ß-protein (Aß42) forms and novel intraneuronal Aß oligomers (AßOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aß uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aß42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aß pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aß42, far-peripheral AßOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteoma/metabolismo , Proteômica , Retina/patologia , Atrofia/patologia , Biomarcadores/metabolismo
4.
Cell Mol Life Sci ; 79(3): 172, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244780

RESUMO

Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.


Assuntos
Doenças do Sistema Nervoso/patologia , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Axônios/metabolismo , Comunicação Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal , Neuropeptídeos/química , Plasminogênio/metabolismo , Serpinas/química , Transdução de Sinais , Ativador de Plasminogênio Tecidual/metabolismo , Neuroserpina
5.
Alzheimers Dement ; 19(12): 5817-5836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37270665

RESUMO

Frontotemporal dementia (FTD) is one of the leading causes of dementia before age 65 and often manifests as abnormal behavior (in behavioral variant FTD) or language impairment (in primary progressive aphasia). FTD's exact clinical presentation varies by culture, language, education, social norms, and other socioeconomic factors; current research and clinical practice, however, is mainly based on studies conducted in North America and Western Europe. Changes in diagnostic criteria and procedures as well as new or adapted cognitive tests are likely needed to take into consideration global diversity. This perspective paper by two professional interest areas of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment examines how increasing global diversity impacts the clinical presentation, screening, assessment, and diagnosis of FTD and its treatment and care. It subsequently provides recommendations to address immediate needs to advance global FTD research and clinical practice.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Idoso , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/terapia , Demência Frontotemporal/psicologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Testes Neuropsicológicos , Idioma , Europa (Continente)
6.
Proteomics ; 22(19-20): e2100247, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866514

RESUMO

Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.


Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla , Animais , Camundongos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/uso terapêutico , Proteoma/metabolismo , Endocanabinoides/metabolismo , Encéfalo/metabolismo , Esclerose Múltipla/metabolismo , Metabolismo Energético , Autofagia , Interleucina-12/metabolismo
7.
Alzheimers Dement ; 18(11): 2218-2233, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35102694

RESUMO

INTRODUCTION: Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS: Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS: A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION: We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.


Assuntos
Doença de Alzheimer , Síndrome de Creutzfeldt-Jakob , Transtornos Mentais , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Diagnóstico Tardio , Filamentos Intermediários , Proteínas tau/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano
8.
Proteomics ; 21(7-8): e2000213, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559908

RESUMO

Different parts of the brain are affected distinctively in various stages of the Alzheimer's disease (AD) pathogenesis. Identifying the biochemical changes in specific brain regions is key to comprehend the neuropathological mechanisms in early pre-symptomatic phases of AD. Quantitative proteomics profiling of four distinct areas of the brain of young APP/PS1 mouse model of AD was performed followed by biochemical pathway enrichment analysis. Findings revealed fundamental compositional and functional shifts even in the early stages of the disease. This novel study highlights unique proteome and biochemical pathway alterations in specific regions of the brain that underlie the early stages of AD pathology and will provide a framework for future longitudinal studies. The proteomics data were deposited into the ProteomeXchange Consortium via PRIDE with the identifier PXD019192.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Presenilina-1/genética
9.
Expert Rev Proteomics ; 18(4): 295-304, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33874826

RESUMO

Mitochondrial dysfunction is involved in Alzheimer's disease (AD) pathogenesis. Mitochondria have their own genetic material; however, most of their proteins (∼99%) are synthesized as precursors on cytosolic ribosomes, and then imported into the mitochondria. Therefore, exploring proteome changes in these organelles can yield valuable information and shed light on the molecular mechanisms underlying mitochondrial dysfunction in AD. Here, we review AD-associated mitochondrial changes including the effects of amyloid beta and tau protein accumulation on the mitochondrial proteome. We also discuss the relationship of ApoE genetic polymorphism with mitochondrial changes, and present a meta-analysis of various differentially expressed proteins in the mitochondria in AD.Area covered: Proteomics studies and their contribution to our understanding of mitochondrial dysfunction in AD pathogenesis.Expert opinion: Proteomics has proven to be an efficient tool to uncover various aspects of this complex organelle, which will broaden our understanding of mitochondrial dysfunction in AD. Evidently, mitochondrial dysfunction is an early biochemical event that might play a central role in driving AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Humanos , Mitocôndrias , Proteoma , Proteômica
10.
J Cell Biochem ; 121(12): 4931-4944, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32692886

RESUMO

Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.

11.
J Transl Med ; 18(1): 278, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646487

RESUMO

BACKGROUND: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate. It is vital to explore the mutagenic capability of the viral genome that enables SARS-CoV-2 to rapidly jump from one host immunity to another and adapt to the genetic pool of local populations. METHODS: For this study, we analysed 2301 complete viral sequences reported from SARS-CoV-2 infected patients. SARS-CoV-2 host genomes were collected from The Global Initiative on Sharing All Influenza Data (GISAID) database containing 9 genomes from pangolin-CoV origin and 3 genomes from bat-CoV origin, Wuhan SARS-CoV2 reference genome was collected from GeneBank database. The Multiple sequence alignment tool, Clustal Omega was used for genomic sequence alignment. The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. RESULTS: Our results demonstrate that bat-CoV shares > 96% similar identity, while pangolin-CoV shares 85.98% identity with Wuhan SARS-CoV-2 genome. This in-depth analysis has identified 12 novel recurrent mutations in South American and African viral genomes out of which 3 were unique in South America, 4 unique in Africa and 5 were present in-patient isolates from both populations. Using state of the art in silico approaches, this study further investigates the interaction of repurposed drugs with the SARS-CoV-2 3CLpro enzyme, which regulates viral replication machinery. CONCLUSIONS: Overall, this study provides insights into the evolving mutations, with implications to understand viral pathogenicity and possible new strategies for repurposing compounds to combat the nCovid-19 pandemic.


Assuntos
Betacoronavirus/enzimologia , Simulação por Computador , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/metabolismo , Replicação do DNA , Reposicionamento de Medicamentos , Geografia , Pneumonia Viral/virologia , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/genética , COVID-19 , Proteases 3C de Coronavírus , Evolução Molecular , Genoma Viral , Humanos , Simulação de Acoplamento Molecular , Mutação/genética , Taxa de Mutação , Pandemias , Filogenia , SARS-CoV-2 , Montagem de Vírus
12.
Mol Ther ; 27(2): 424-441, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341011

RESUMO

Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptor trkB/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Eletrorretinografia , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Cell Mol Life Sci ; 76(10): 1833-1863, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30770953

RESUMO

Alzheimer's disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early. Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clinical trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amyloidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding the contribution of these markers in different aspects of disease pathogenesis.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/patologia , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Clusterina/líquido cefalorraquidiano , Humanos , Neurocalcina/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
14.
Aust N Z J Psychiatry ; 54(1): 57-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220922

RESUMO

OBJECTIVE: Neurofilament light has shown promise as a biomarker for diagnosis, staging and prognosis in a wide range of neurological and neurodegenerative disorders. This study explored the utility of cerebrospinal fluid neurofilament light in distinguishing primary psychiatric disorders from neurodegenerative and neurological disorders, a common diagnostic dilemma for psychiatrists and neurologists. METHODS: This cross-sectional retrospective pilot study assessed cerebrospinal fluid neurofilament light on patients referred to a tertiary neuropsychiatry service from 2009 to 2017 for diagnostic assessment of neuropsychiatric and neurocognitive symptoms, where a neurodegenerative disorder was a differential diagnosis, who received lumbar punctures as part of a comprehensive workup. The most recent gold-standard clinical consensus diagnosis was categorised into psychiatric disorder or neurodegenerative or neurological disorder. Data from healthy controls were available for comparison. Data extraction and diagnostic categorisation was blinded to neurofilament light results. RESULTS: A total of 129 participants were included: 77 neurodegenerative or neurological disorder (mean age 57 years, including Alzheimer's dementia, frontotemporal dementia), 31 psychiatric disorder (mean age 51 years, including schizophrenia, major depressive disorder) and 21 healthy controls (mean age 66 years). Neurofilament light was significantly higher in neurodegenerative or neurological disorder (M = 3560 pg/mL, 95% confidence intervals = [2918, 4601]) compared to psychiatric disorder (M = 949 pg/mL, 95% confidence intervals = [830, 1108]) and controls (M = 1036 pg/mL, 95% confidence intervals = [908, 1165]). Neurofilament light distinguished neurodegenerative or neurological disorder from psychiatric disorder with an area under the curve of 0.94 (95% confidence intervals = [0.89, 0.98]); a cut-off of 1332 pg/mL was associated with 87% sensitivity and 90% specificity. CONCLUSION: Cerebrospinal fluid neurofilament light shows promise as a diagnostic test to assist with the often challenging diagnostic dilemma of distinguishing psychiatric disorders from neurodegenerative and neurological disorders. Further studies are warranted to replicate and expand on these findings, including on plasma neurofilament light.


Assuntos
Transtornos Mentais/líquido cefalorraquidiano , Transtornos Mentais/diagnóstico , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/diagnóstico , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Transtorno Depressivo Maior/líquido cefalorraquidiano , Transtorno Depressivo Maior/diagnóstico , Diagnóstico Diferencial , Feminino , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Esquizofrenia/líquido cefalorraquidiano , Esquizofrenia/diagnóstico
15.
J Biol Chem ; 291(2): 547-59, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26538562

RESUMO

Although the formation of ß-amyloid (Aß) deposits in the brain is a hallmark of Alzheimer disease (AD), the soluble oligomers rather than the mature amyloid fibrils most likely contribute to Aß toxicity and neurodegeneration. Thus, the discovery of agents targeting soluble Aß oligomers is highly desirable for early diagnosis prior to the manifestation of a clinical AD phenotype and also more effective therapies. We have previously reported that a novel 15-amino acid peptide (15-mer), isolated via phage display screening, targeted Aß and attenuated its neurotoxicity (Taddei, K., Laws, S. M., Verdile, G., Munns, S., D'Costa, K., Harvey, A. R., Martins, I. J., Hill, F., Levy, E., Shaw, J. E., and Martins, R. N. (2010) Neurobiol. Aging 31, 203-214). The aim of the current study was to generate and biochemically characterize analogues of this peptide with improved stability and therapeutic potential. We demonstrated that a stable analogue of the 15-amino acid peptide (15M S.A.) retained the activity and potency of the parent peptide and demonstrated improved proteolytic resistance in vitro (stable to t = 300 min, c.f. t = 30 min for the parent peptide). This candidate reduced the formation of soluble Aß42 oligomers, with the concurrent generation of non-toxic, insoluble aggregates measuring up to 25-30 nm diameter as determined by atomic force microscopy. The 15M S.A. candidate directly interacted with oligomeric Aß42, as shown by coimmunoprecipitation and surface plasmon resonance/Biacore analysis, with an affinity in the low micromolar range. Furthermore, this peptide bound fibrillar Aß42 and also stained plaques ex vivo in brain tissue from AD model mice. Given its multifaceted ability to target monomeric and aggregated Aß42 species, this candidate holds promise for novel preclinical AD imaging and therapeutic strategies.


Assuntos
Amiloide/metabolismo , Neurotoxinas/toxicidade , Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Administração Intravenosa , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos Transgênicos , Estabilidade Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Solubilidade , Ressonância de Plasmônio de Superfície , Trítio/metabolismo
16.
Cell Mol Life Sci ; 73(22): 4279-4297, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27333888

RESUMO

Accumulation of amyloid ß (Aß) and its aggregates in the ageing central nervous system is regarded synonymous to Alzheimer's disease (AD) pathology. Despite unquestionable advances in mechanistic and diagnostic aspects of the disease understanding, the primary cause of Aß accumulation as well as its in vivo roles remains elusive; nonetheless, the majority of the efforts to address pathological mechanisms for therapeutic development are focused towards moderating Aß accumulation in the brain. More recently, Aß deposition has been identified in the eye and is linked with distinct age-related diseases including age-related macular degeneration, glaucoma as well as AD. Awareness of the Aß accumulation in these markedly different degenerative disorders has led to an increasing body of work exploring overlapping mechanisms, a prospective biomarker role for Aß and the potential to use retina as a model for brain related neurodegenerative disorders. Here, we present an integrated view of current understanding of the retinal Aß deposition discussing the accumulation mechanisms, anticipated impacts and outlining ameliorative approaches that can be extrapolated to the retina for potential therapeutic benefits. Further longitudinal investigations in humans and animal models will determine retinal Aß association as a potential pathognomonic, diagnostic or prognostic biomarker.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Doenças Neurodegenerativas/metabolismo , Retina/patologia , Animais , Encéfalo/metabolismo , Humanos , Inflamação/patologia , Agregados Proteicos , Retina/metabolismo
17.
Int Psychogeriatr ; 29(11): 1825-1834, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28720165

RESUMO

BACKGROUND: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism Met allele exacerbates amyloid (Aß) related decline in episodic memory (EM) and hippocampal volume (HV) over 36-54 months in preclinical Alzheimer's disease (AD). However, the extent to which Aß+ and BDNF Val66Met is related to circulating markers of BDNF (e.g. serum) is unknown. We aimed to determine the effect of Aß and the BDNF Val66Met polymorphism on levels of serum mBDNF, EM, and HV at baseline and over 18-months. METHODS: Non-demented older adults (n = 446) underwent Aß neuroimaging and BDNF Val66Met genotyping. EM and HV were assessed at baseline and 18 months later. Fasted blood samples were obtained from each participant at baseline and at 18-month follow-up. Aß PET neuroimaging was used to classify participants as Aß- or Aß+. RESULTS: At baseline, Aß+ adults showed worse EM impairment and lower serum mBDNF levels relative to Aß- adults. BDNF Val66Met polymorphism did not affect serum mBDNF, EM, or HV at baseline. When considered over 18-months, compared to Aß- Val homozygotes, Aß+ Val homozygotes showed significant decline in EM and HV but not serum mBDNF. Similarly, compared to Aß+ Val homozygotes, Aß+ Met carriers showed significant decline in EM and HV over 18-months but showed no change in serum mBDNF. CONCLUSION: While allelic variation in BDNF Val66Met may influence Aß+ related neurodegeneration and memory loss over the short term, this is not related to serum mBDNF. Longer follow-up intervals may be required to further determine any relationships between serum mBDNF, EM, and HV in preclinical AD.


Assuntos
Doença de Alzheimer/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/diagnóstico por imagem , Memória Episódica , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico por imagem , Fator Neurotrófico Derivado do Encéfalo/sangue , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Polimorfismo Genético , Tomografia por Emissão de Pósitrons
18.
Alzheimers Dement ; 13(1): 45-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870940

RESUMO

The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer's disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility and an unclear path for moving basic discovery toward clinical utilization. Here we reviewed the recent literature on blood-based biomarkers in AD to provide a current state of the art. In addition, a collaborative model is proposed that leverages academic and industry strengths to facilitate the field in moving past discovery only work and toward clinical use. Key resources are provided. This new public-private partnership model is intended to circumvent the traditional handoff model and provide a clear and useful paradigm for the advancement of biomarker science in AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Comportamento Cooperativo , Parcerias Público-Privadas , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
19.
Br J Nutr ; 115(12): 2106-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27102361

RESUMO

Curcumin therapy in animals has produced positive cognitive and behavioural outcomes; results of human trials, however, have been inconsistent. In this study, we report the results of a 12-month, randomised, placebo-controlled, double-blind study that investigated the ability of a curcumin formulation to prevent cognitive decline in a population of community-dwelling older adults. Individuals (n 96) ingested either placebo or 1500 mg/d BiocurcumaxTM for 12 months. A battery of clinical and cognitive measures was administered at baseline and at the 6-month and 12-month follow-up assessments. A significant time×treatment group interaction was observed for the Montreal Cognitive Assessment (repeated-measures analysis; time×treatment; F=3·85, P<0·05). Subsequent analysis revealed that this association was driven by a decline in function of the placebo group at 6 months that was not observed in the curcumin treatment group. No differences were observed between the groups for all other clinical and cognitive measures. Our findings suggest that further longitudinal assessment is required to investigate changes in cognitive outcome measures, ideally in conjunction with biological markers of neurodegeneration.


Assuntos
Transtornos Cognitivos/prevenção & controle , Cognição/efeitos dos fármacos , Curcuma/química , Curcumina/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Idoso , Envelhecimento , Curcumina/farmacologia , Demência/complicações , Método Duplo-Cego , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia
20.
Biochim Biophys Acta ; 1842(9): 1567-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24942931

RESUMO

Brain-derived neurotrophic factor (BDNF) stimulation of its high-affinity receptor TrkB results in activation of pro-survival cell-signalling pathways that can afford neuroprotection to the retina. Reduction in retrograde axonal transport of neurotrophic factors such as BDNF from the brain to the neuronal cell bodies in the retina has been suggested as a critical factor underlying progressive and selective degeneration of ganglion cell layer and optic nerve in glaucoma. We investigated the role of BDNF in preserving inner retinal homeostasis in normal and glaucoma states using BDNF(+/-) mice and compared it with wild type controls. This study demonstrated that BDNF(+/-) animals were more susceptible to functional, morphological and molecular degenerative changes in the inner retina caused by age as well as upon exposure to experimental glaucoma caused by increased intraocular pressure. Glaucoma induced a down regulation of BDNF/TrkB signalling and an increase in levels of neurotoxic amyloid ß 1-42 in the optic nerve head which were exacerbated in BDNF(+/-) mice. Similar results were obtained upon analysing the human optic nerve head tissues. Our data highlighted the role of BDNF in maintaining the inner retinal integrity under normal conditions and the detrimental effects of its insufficiency on the retina and optic nerve in glaucoma.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Modelos Animais de Doenças , Glaucoma/patologia , Nervo Óptico/patologia , Fragmentos de Peptídeos/metabolismo , Retina/patologia , Células Ganglionares da Retina/patologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia , Transporte Axonal , Western Blotting , Estudos de Casos e Controles , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Glaucoma/etiologia , Glaucoma/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Knockout , Nervo Óptico/metabolismo , Receptor trkB/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA