Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2115616120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494421

RESUMO

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.


Assuntos
Preservação de Sangue , Procedimentos Analíticos em Microchip , Transfusão de Sangue/instrumentação , Transfusão de Sangue/métodos , Humanos , Preservação de Sangue/métodos , Dispositivos Lab-On-A-Chip , Eritrócitos , Aprendizado de Máquina
2.
Analyst ; 149(9): 2561-2572, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38501195

RESUMO

Oxygen (O2) binds to hemoglobin (Hb) in the lungs and is then released (dissociated) in the tissues. The Bohr effect is a physiological mechanism that governs the affinity of Hb for O2 based on pH, where a lower pH results in a lower Hb-O2 affinity and higher Hb-O2 dissociation. Hb-O2 affinity and dissociation are crucial for maintaining aerobic metabolism in cells and tissues. Despite its vital role in human physiology, Hb-O2 dissociation measurement is underutilized in basic research and in clinical laboratories, primarily due to the technical complexity and limited throughput of existing methods. We present a rapid Hb-O2 dissociation measurement approach by leveraging the Bohr effect and detecting the optical shift in the Soret band that corresponds to the light absorption by the heme group in Hb. This new method reduces Hb-O2 dissociation measurement time from hours to minutes. We show that Hb deoxygenation can be accelerated chemically at the optimal pH of 6.9. We show that time and pH-controlled deoxygenation of Hb results in rapid and distinct conformational changes in its tertiary structure. These molecular conformational changes are manifested as significant, detectable shifts in Hb's optical absorption spectrum, particularly in the characteristic Soret band (414 nm). We extensively validated the method by testing human blood samples containing normal Hb and Hb variants. We show that rapid Hb-O2 dissociation can be used to screen for and detect Hb-O2 affinity disorders and to evaluate the function and efficacy of Hb-modifying therapies. The ubiquity of optical absorption spectrophotometers positions this approach as an accessible, rapid, and accurate Hb-O2 dissociation measurement method for basic research and clinical use. We anticipate this method's broad adoption will democratize the diagnosis and prognosis of Hb disorders, such as sickle cell disease. Further, this method has the potential to transform the research and development of new targeted and genome-editing-based therapies that aim to modify or improve Hb-O2 affinity.


Assuntos
Hemoglobinas , Óptica e Fotônica , Oxigênio , Humanos , Hemoglobinas/química , Hemoglobinas/metabolismo , Hemoglobinas/análise , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Oxigênio/química , Óptica e Fotônica/métodos
3.
Biophys J ; 122(12): 2564-2576, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37177783

RESUMO

Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.


Assuntos
Anemia Falciforme , Laminina , Humanos , Laminina/metabolismo , Eritrócitos , Adesão Celular , Eritrócitos Anormais
4.
Br J Haematol ; 201(3): 552-563, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604837

RESUMO

Endothelial activation and sickle red blood cell (RBC) adhesion are central to the pathogenesis of sickle cell disease (SCD). Quantitatively, RBC-derived extracellular vesicles (REVs) are more abundant from SS RBCs compared with healthy RBCs (AA RBCs). Sickle RBC-derived REVs (SS REVs) are known to promote endothelial cell (EC) activation through cell signalling and transcriptional regulation at longer terms. However, the SS REV-mediated short-term non-transcriptional response of EC is unclear. Here, we examined the impact of SS REVs on acute microvascular EC activation and RBC adhesion at 2 h. Compared with AA REVs, SS REVs promoted human pulmonary microvascular ECs (HPMEC) activation indicated by increased von Willebrand factor (VWF) expression. Under microfluidic conditions, we found abnormal SS RBC adhesion to HPMECs exposed to SS REVs. This enhanced SS RBC adhesion was reduced by haeme binding protein haemopexin or VWF cleaving protease ADAMTS13 to a level similar to HPMECs treated with AA REVs. Consistent with these observations, haemin- or SS REV-induced microvascular stasis in SS mice with implanted dorsal skin-fold chambers that was inhibited by ADAMTS13. The adhesion induced by SS REVs was variable and was higher with SS RBCs from patients with increased markers of haemolysis (lactate dehydrogenase and reticulocyte count) or a concomitant clinical diagnosis of deep vein thrombosis. Our results emphasise the critical contribution made by REVs to the pathophysiology of SCD by triggering acute microvascular EC activation and abnormal RBC adhesion. These findings may help to better understand acute pathophysiological mechanism of SCD and thereby the development of new treatment strategies using VWF as a potential target.


Assuntos
Anemia Falciforme , Células Endoteliais , Humanos , Animais , Camundongos , Células Endoteliais/patologia , Fator de von Willebrand/metabolismo , Adesão Celular , Eritrócitos/metabolismo
5.
Curr Opin Hematol ; 29(6): 327-334, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916533

RESUMO

PURPOSE OF REVIEW: This review briefly summarizes the significant impact of thromboinflammation in sickle cell disease in relation to recent advances in biomarkers that are used in functional microfluidic assays. RECENT FINDINGS: Sickle cell disease (SCD) is an inherited hemoglobinopathy that affects 100 000 Americans and millions worldwide. Patients with SCD exhibit chronic haemolysis, chronic inflammation and thrombosis, and vaso-occlusion, triggering various clinical complications, including organ damage and increased mortality and morbidity. Recent advances in functional microfluidic assays provide direct biomarkers of disease, including abnormal white blood cell and red blood cell adhesion, cell aggregation, endothelial degradation and contraction, and thrombus formation. SUMMARY: Novel and emerging functional microfluidic assays are a promising and feasible strategy to comprehensively characterize thromboinflammatory reactions in SCD, which can be used for personalized risk assessment and tailored therapeutic decisions.


Assuntos
Anemia Falciforme , Trombose , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Biomarcadores , Humanos , Inflamação , Microfluídica , Tromboinflamação
6.
Br J Haematol ; 198(5): 893-902, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822297

RESUMO

Individuals with sickle cell disease (SCD) have persistently elevated thrombin generation that results in a state of systemic hypercoagulability. Antithrombin-III (ATIII), an endogenous serine protease inhibitor, inhibits several enzymes in the coagulation cascade, including thrombin. Here, we utilize a biomimetic microfluidic device to model the morphology and adhesive properties of endothelial cells (ECs) activated by thrombin and examine the efficacy of ATIII in mitigating the adhesion of SCD patient-derived red blood cells (RBCs) and EC retraction. Microfluidic devices were fabricated, seeded with ECs, and incubated under physiological shear stress. Cells were then activated with thrombin with or without an ATIII pretreatment. Blood samples from subjects with normal haemoglobin (HbAA) and subjects with homozygous SCD (HbSS) were used to examine RBC adhesion to ECs. Endothelial cell surface adhesion molecule expression and confluency in response to thrombin and ATIII treatments were also evaluated. We found that ATIII pretreatment of ECs reduced HbSS RBC adhesion to thrombin-activated endothelium. Furthermore, ATIII mitigated cellular contraction and reduced surface expression of von Willebrand factor and vascular cell adhesion molecule-1 (VCAM-1) mediated by thrombin. Our findings suggest that, by attenuating thrombin-mediated EC damage and RBC adhesion to endothelium, ATIII may alleviate the thromboinflammatory manifestations of SCD.


Assuntos
Anemia Falciforme , Trombina , Anticoagulantes/farmacologia , Antitrombinas/metabolismo , Antitrombinas/farmacologia , Adesão Celular , Células Endoteliais , Endotélio Vascular/metabolismo , Eritrócitos , Humanos , Trombina/metabolismo , Trombina/farmacologia
7.
PLoS Comput Biol ; 17(11): e1008946, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843453

RESUMO

Sickle cell disease, a genetic disorder affecting a sizeable global demographic, manifests in sickle red blood cells (sRBCs) with altered shape and biomechanics. sRBCs show heightened adhesive interactions with inflamed endothelium, triggering painful vascular occlusion events. Numerous studies employ microfluidic-assay-based monitoring tools to quantify characteristics of adhered sRBCs from high resolution channel images. The current image analysis workflow relies on detailed morphological characterization and cell counting by a specially trained worker. This is time and labor intensive, and prone to user bias artifacts. Here we establish a morphology based classification scheme to identify two naturally arising sRBC subpopulations-deformable and non-deformable sRBCs-utilizing novel visual markers that link to underlying cell biomechanical properties and hold promise for clinically relevant insights. We then set up a standardized, reproducible, and fully automated image analysis workflow designed to carry out this classification. This relies on a two part deep neural network architecture that works in tandem for segmentation of channel images and classification of adhered cells into subtypes. Network training utilized an extensive data set of images generated by the SCD BioChip, a microfluidic assay which injects clinical whole blood samples into protein-functionalized microchannels, mimicking physiological conditions in the microvasculature. Here we carried out the assay with the sub-endothelial protein laminin. The machine learning approach segmented the resulting channel images with 99.1±0.3% mean IoU on the validation set across 5 k-folds, classified detected sRBCs with 96.0±0.3% mean accuracy on the validation set across 5 k-folds, and matched trained personnel in overall characterization of whole channel images with R2 = 0.992, 0.987 and 0.834 for total, deformable and non-deformable sRBC counts respectively. Average analysis time per channel image was also improved by two orders of magnitude (∼ 2 minutes vs ∼ 2-3 hours) over manual characterization. Finally, the network results show an order of magnitude less variance in counts on repeat trials than humans. This kind of standardization is a prerequisite for the viability of any diagnostic technology, making our system suitable for affordable and high throughput disease monitoring.


Assuntos
Anemia Falciforme/sangue , Aprendizado Profundo , Eritrócitos Anormais/classificação , Microfluídica/estatística & dados numéricos , Anemia Falciforme/diagnóstico por imagem , Fenômenos Biofísicos , Biologia Computacional , Diagnóstico por Computador/estatística & dados numéricos , Deformação Eritrocítica/fisiologia , Eritrócitos Anormais/patologia , Eritrócitos Anormais/fisiologia , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Técnicas In Vitro , Dispositivos Lab-On-A-Chip/estatística & dados numéricos , Laminina/metabolismo , Redes Neurais de Computação , Multimerização Proteica
10.
Curr Opin Hematol ; 28(3): 138-149, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631785

RESUMO

PURPOSE OF REVIEW: This review summarizes the significant biophysical and rheological aspects of red blood cell physiology and pathophysiology in relation to recent advances in microfluidic biomarker assays and emerging targeted or curative intent therapies. RECENT FINDINGS: Alterations in red cell biophysical properties and blood rheology have been associated with numerous hematologic and circulatory disorders. Recent advances in biomarker assays enable effective assessment of these biophysical and rheological properties in normoxia or physiological hypoxia in a clinically meaningful way. There are emerging targeted or curative therapies that aim to improve red cell pathophysiology, especially in the context of inherited hemoglobin disorders, such as sickle cell disease. SUMMARY: Red cell pathophysiology can be therapeutically targeted and the improvements in membrane and cellular biophysics and blood rheology can now be feasibly assessed via new microfluidic biomarker assays. Recent advances provide a new hope and novel treatment options for major red cell ailments, including inherited hemoglobin disorders, membrane disorders, and other pathologies of the red cell, such as malaria.


Assuntos
Biomarcadores , Fenômenos Biofísicos , Fenômenos Fisiológicos Celulares , Suscetibilidade a Doenças , Eritrócitos/fisiologia , Gerenciamento Clínico , Testes Hematológicos/métodos , Testes Hematológicos/normas , Hemoglobinopatias/sangue , Hemoglobinopatias/diagnóstico , Hemoglobinopatias/etiologia , Hemoglobinopatias/terapia , Humanos , Microfluídica/métodos , Reologia
11.
Microcirculation ; 28(2): e12662, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33025653

RESUMO

OBJECTIVES: We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS: Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS: We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS: We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.


Assuntos
Anemia Falciforme , Hidroxiureia , Anemia Falciforme/tratamento farmacológico , Eritrócitos , Hemoglobinas , Humanos , Hidroxiureia/uso terapêutico , Microcirculação , Microfluídica , Fenótipo
12.
J Biomech Eng ; 143(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764427

RESUMO

This article describes novel measurements of the velocity of whole blood flow in a microchannel during coagulation. The blood is imaged volumetrically using a simple optical setup involving a white light source and a microscope camera. The images are processed using particle image velocimetry (PIV) and wavelet-based optical flow velocimetry (wOFV), both of which use images of individual blood cells as flow tracers. Measurements of several clinically relevant parameters such as the clotting time, decay rate, and blockage ratio are computed. The high-resolution wOFV results yield highly detailed information regarding thrombus formation and corresponding flow evolution that is the first of its kind.


Assuntos
Fluxo Óptico
13.
Br J Haematol ; 190(4): 599-609, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346864

RESUMO

Many hypotheses have been proposed to explain how a glutamate to valine substitution in sickle haemoglobin (HbS) can cause sickle cell disease (SCD). We propose and document a new mechanism in which elevated tyrosine phosphorylation of Band 3 initiates sequelae that cause vaso-occlusion and the symptoms of SCD. In this mechanism, denaturation of HbS and release of heme generate intracellular oxidants which cause inhibition of erythrocyte tyrosine phosphatases, thus permitting constitutive tyrosine phosphorylation of Band 3. This phosphorylation in turn induces dissociation of the spectrin-actin cytoskeleton from the membrane, leading to membrane weakening, discharge of membrane-derived microparticles (which initiate the coagulation cascade) and release of cell-free HbS (which consumes nitric oxide) and activates the endothelium to express adhesion receptors). These processes promote vaso-occlusive events which cause SCD. We further show that inhibitors of Syk tyrosine kinase block Band 3 tyrosine phosphorylation, prevent release of cell-free Hb, inhibit discharge of membrane-derived microparticles, increase sickle cell deformability, reduce sickle cell adhesion to human endothelial cells, and enhance sickle cell flow through microcapillaries. In view of reports that imatinib (a Syk inhibitor) successfully treats symptoms of sickle cell disease, we suggest that Syk tyrosine kinase inhibitors warrant repurposing as potential treatments for SCD.


Assuntos
Anemia Falciforme/tratamento farmacológico , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Anemia Falciforme/sangue , Adesão Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/metabolismo , Deformação Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos Anormais/efeitos dos fármacos , Eritrócitos Anormais/metabolismo , Hemoglobina Falciforme/análise , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Estresse Oxidativo , Oxigênio/sangue , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Plasma , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Traço Falciforme/sangue , Talassemia beta/sangue
14.
Blood Cells Mol Dis ; 83: 102424, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32208292

RESUMO

Upregulated expression of P-selectin on activated endothelium and platelets significantly contributes to the initiation and progression of vaso-occlusive crises (VOC), a major cause of morbidity in sickle cell disease (SCD). Crizanlizumab (ADAKVEO®), a humanized monoclonal antibody against P-selectin, primarily inhibits the interaction between leukocytes and P-selectin, and has been shown to decrease the frequency of VOCs in clinical trials. However, the lack of reliable in vitro assays that objectively measure leukocyte adhesion to P-selectin remains a critical barrier to evaluating and improving the therapeutic treatment in SCD. Here, we present a standardized microfluidic BioChip whole blood adhesion assay to assess leukocyte adhesion to P-selectin under physiologic flow conditions. Our results demonstrated heterogeneous adhesion by leukocytes to immobilized P-selectin, and dose-dependent inhibition of this adhesion following pre-exposure to Crizanlizumab. Importantly, treatment with Crizanlizumab following adhesion to P-selectin promoted detachment of rolling, but not of firmly adherent leukocytes. Taken together, our results suggest that the microfluidic BioChip system is a promising in vitro assay with which to screen patients, monitor treatment response, and guide current and emerging anti-adhesive therapies in SCD.


Assuntos
Anemia Falciforme/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Adesão Celular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Selectina-P/antagonistas & inibidores , Adulto , Idoso , Feminino , Humanos , Dispositivos Lab-On-A-Chip/normas , Leucócitos/citologia , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/normas , Pessoa de Meia-Idade , Adulto Jovem
15.
Am J Hematol ; 95(11): 1246-1256, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32656816

RESUMO

Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the ß-globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.


Assuntos
Anemia Falciforme/sangue , Viscosidade Sanguínea , Adesão Celular , Eritrócitos Anormais/metabolismo , Biomarcadores/sangue , Feminino , Humanos , Masculino
16.
Analyst ; 145(7): 2525-2542, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32123889

RESUMO

Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip via testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.


Assuntos
Eletroforese em Microchip/métodos , Hemoglobinas/análise , Papel , Hemoglobina Falciforme/análise , Humanos , Processamento de Imagem Assistida por Computador , Miniaturização , Sistemas Automatizados de Assistência Junto ao Leito , Interface Usuário-Computador
17.
Blood Cells Mol Dis ; 79: 102350, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404907

RESUMO

Priapism is a serious, but episodic, complication of sickle cell disease (SCD). We had previously reported that subjects with SCD had variable red blood cell (RBC) adhesion to the immobilized sub-endothelial protein laminin (LN). We examined adhesion to LN in a microfluidic device, of RBCs from men with homozygous sickle cell anemia. Adhesion under hypoxic, but not ambient, conditions was greater in men with a history of priapism, with median adhesion of 529 RBCs per 32 mm2/unit area (range 5-5248) rising to 3268 RBCs per 32 mm2/unit area (range 49-18,368, P = 0.004), under ambient and hypoxic conditions, respectively (n = 14). This was not seen in RBCs from men without a history of priapism (median 402 (range 14-785) and 122 (range 31-4112) RBCs per 32 mm2/unit area, ambient and hypoxic conditions, respectively (P = N.S., N = 12)). We also observed an association between hypoxia-enhanced RBC adhesion in vitro and a history of hemoglobin desaturation in vivo independent of priapism. Prolonged Hb desaturation may increase sickle polymer formation and RBC damage, resulting in enhanced RBC adhesion, hemolysis, and endothelial dysfunction. The identification of distinct RBC phenotypes could prompt clinical evaluation for suitability for novel or under-used therapies, like oxygen.


Assuntos
Anemia Falciforme/sangue , Adesão Celular , Eritrócitos/patologia , Hemoglobinas/metabolismo , Priapismo , Humanos , Hipóxia/complicações , Laminina/metabolismo , Masculino
18.
Am J Hematol ; 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905377

RESUMO

In sickle cell disease (SCD), 'disease severity' associates with increased RBC adhesion to quiescent endothelium, but the impact on activated endothelium is not known. Increased concentrations of free heme result from intravascular hemolysis in SCD. Heme is essential for aerobic metabolism, and plays an important role in numerous biological processes. Excess free heme induces reactive oxygen species generation and endothelial activation, which are associated with cardiovascular disorders including atherosclerosis, hypertension, and thrombosis. Here, we utilized an endothelialized microfluidic platform (Endothelium-on-a-chip) to assess adhesion of sickle hemoglobin-containing red blood cells (HbS RBCs), from adults with homozygous SCD, to heme-activated human endothelial cells (EC) in vitro. Confluent EC monolayers in microchannels were treated with pathophysiologically relevant levels of heme in order to simulate the highly hemolytic intravascular milieu seen in SCD. RBC adhesion to heme-activated ECs varied from subject to subject, and was associated with plasma markers of hemolysis (LDH) and reticulocytosis, thereby linking those RBCs that are most likely to adhere with those that are most likely to hemolyze. These results re-emphasize the critical contribution made by heterogeneous adhesive HbS RBCs to the pathophysiology of SCD. We found that adhesion of HbS RBCs to heme-activated ECs varied amongst individuals in the study population, and associated with biomarkers of hemolysis and inflammation, age, and a recent history of transfusion. Importantly, the microfluidic approach described herein holds promise as a clinically feasible Endothelium-on-a-chip platform with which to study complex heterocellular adhesive interactions in SCD. This article is protected by copyright. All rights reserved.

19.
Microcirculation ; 24(5)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387057

RESUMO

OBJECTIVES: The advancement of microfluidic technology has facilitated the simulation of physiological conditions of the microcirculation, such as oxygen tension, fluid flow, and shear stress in these devices. Here, we present a micro-gas exchanger integrated with microfluidics to study RBC adhesion under hypoxic flow conditions mimicking postcapillary venules. METHODS: We simulated a range of physiological conditions and explored RBC adhesion to endothelial or subendothelial components (FN or LN). Blood samples were injected into microchannels at normoxic or hypoxic physiological flow conditions. Quantitative evaluation of RBC adhesion was performed on 35 subjects with homozygous SCD. RESULTS: Significant heterogeneity in RBC adherence response to hypoxia was seen among SCD patients. RBCs from a HEA population showed a significantly greater increase in adhesion compared to RBCs from a HNA population, for both FN and LN. CONCLUSIONS: The approach presented here enabled the control of oxygen tension in blood during microscale flow and the quantification of RBC adhesion in a cost-efficient and patient-specific manner. We identified a unique patient population in which RBCs showed enhanced adhesion in hypoxia in vitro. Clinical correlates suggest a more severe clinical phenotype in this subgroup.


Assuntos
Eritrócitos/patologia , Hipóxia/fisiopatologia , Microcirculação/fisiologia , Adulto , Anemia Falciforme/fisiopatologia , Velocidade do Fluxo Sanguíneo , Adesão Celular , Humanos , Técnicas Analíticas Microfluídicas/métodos
20.
Nat Mater ; 15(6): 621-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27019384

RESUMO

Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.


Assuntos
Biotina/química , Estreptavidina/química , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA