Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Cancer ; 15: 215, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25886519

RESUMO

BACKGROUND: Germline DNA mutations that increase the susceptibility of a patient to certain cancers have been identified in various genes, and patients can be screened for mutations in these genes to assess their level of risk for developing cancer. Traditional methods using Sanger sequencing focus on small groups of genes and therefore are unable to screen for numerous genes from several patients simultaneously. The goal of the present study was to validate a 25-gene panel to assess genetic risk for cancer in 8 different tissues using next generation sequencing (NGS) techniques. METHODS: Twenty-five genes associated with hereditary cancer syndromes were selected for development of a panel to screen for risk of these cancers using NGS. In an initial technical assessment, NGS results for BRCA1 and BRCA2 were compared with Sanger sequencing in 1864 anonymized DNA samples from patients who had undergone previous clinical testing. Next, the entire gene panel was validated using parallel NGS and Sanger sequencing in 100 anonymized DNA samples. Large rearrangement analysis was validated using NGS, microarray comparative genomic hybridization (CGH), and multiplex ligation-dependent probe amplification analyses (MLPA). RESULTS: NGS identified 15,877 sequence variants, while Sanger sequencing identified 15,878 in the BRCA1 and BRCA2 comparison study of the same regions. Based on these results, the NGS process was refined prior to the validation of the full gene panel. In the validation study, NGS and Sanger sequencing were 100% concordant for the 3,923 collective variants across all genes for an analytical sensitivity of the NGS assay of >99.92% (lower limit of 95% confidence interval). NGS, microarray CGH and MLPA correctly identified all expected positive and negative large rearrangement results for the 25-gene panel. CONCLUSION: This study provides a thorough validation of the 25-gene NGS panel and indicates that this analysis tool can be used to collect clinically significant information related to risk of developing hereditary cancers.


Assuntos
Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/genética , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Testes Genéticos , Genômica/métodos , Mutação em Linhagem Germinativa , Humanos , Mutação , Reprodutibilidade dos Testes , Risco , Sensibilidade e Especificidade
2.
J Exp Clin Cancer Res ; 33: 74, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25204323

RESUMO

BACKGROUND: Conventional Sanger sequencing reliably detects the majority of genetic mutations associated with hereditary cancers, such as single-base changes and small insertions or deletions. However, detection of genomic rearrangements, such as large deletions and duplications, requires special technologies. Microarray analysis has been successfully used to detect large rearrangements (LRs) in genetic disorders. METHODS: We designed and validated a high-density oligonucleotide microarray for the detection of gene-level genomic rearrangements associated with hereditary breast and ovarian cancer (HBOC), Lynch, and polyposis syndromes. The microarray consisted of probes corresponding to the exons and flanking introns of BRCA1 and BRCA2 (≈1,700) and Lynch syndrome/polyposis genes MLH1, MSH2, MSH6, APC, MUTYH, and EPCAM (≈2,200). We validated the microarray with 990 samples previously tested for LR status in BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, MUTYH, or EPCAM. Microarray results were 100% concordant with previous results in the validation studies. Subsequently, clinical microarray analysis was performed on samples from patients with a high likelihood of HBOC mutations (13,124), Lynch syndrome mutations (18,498), and polyposis syndrome mutations (2,739) to determine the proportion of LRs. RESULTS: Our results demonstrate that LRs constitute a substantial proportion of genetic mutations found in patients referred for hereditary cancer genetic testing. CONCLUSION: The use of microarray comparative genomic hybridization (CGH) for the detection of LRs is well-suited as an adjunct technology for both single syndrome (by Sanger sequencing analysis) and extended gene panel testing by next generation sequencing analysis. Genetic testing strategies using microarray analysis will help identify additional patients carrying LRs, who are predisposed to various hereditary cancers.


Assuntos
Genômica , Síndromes Neoplásicas Hereditárias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Translocação Genética , Éxons , Genômica/métodos , Humanos , Proteína 2 Homóloga a MutS/genética , Mutação , Síndromes Neoplásicas Hereditárias/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes
3.
Nat Genet ; 42(10): 833-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802477

RESUMO

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.


Assuntos
Duplicação Gênica , Genes de Plantas/genética , Genoma de Planta , Malus/genética , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Ligação Genética , Estudo de Associação Genômica Ampla , Malus/crescimento & desenvolvimento , Filogenia
4.
PLoS One ; 2(12): e1326, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18094749

RESUMO

BACKGROUND: Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. PRINCIPAL FINDINGS: We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). CONCLUSIONS: Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.


Assuntos
Sequência Consenso , Genoma de Planta , Heterozigoto , Vitis/genética , Cromossomos de Plantas , DNA de Plantas/genética , Evolução Molecular , Fenóis/metabolismo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Terpenos/metabolismo , Fatores de Transcrição/metabolismo , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA