Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Carcinog ; 61(7): 629-642, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35560453

RESUMO

Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.


Assuntos
Fatores de Transcrição , Proteína Supressora de Tumor p53 , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Semin Cell Dev Biol ; 58: 136-45, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287306

RESUMO

Signaling pathways shape and transmit the cell's reaction to its changing environment; however, pathogens can circumvent this response by manipulating host signaling. To subvert host defense, they beat it at its own game: they hijack host pathways by mimicking the binding surfaces of host-encoded proteins. For this, it is not necessary to achieve global protein homology; imitating merely the interaction surface is sufficient. Different protein folds often interact via similar protein-protein interface architectures. This similarity in binding surfaces permits the pathogenic protein to compete with a host target protein. Thus, rather than binding a host-encoded partner, the host protein hub binds the pathogenic surrogate. The outcome can be dire: rewiring or repurposing the host pathways, shifting the cell signaling landscape and consequently the immune response. They can also cause persistent infections as well as cancer by modulating key signaling pathways, such as those involving Ras. Mapping the rewired host-pathogen 'superorganism' interaction network - along with its structural details - is critical for in-depth understanding of pathogenic mechanisms and developing efficient therapeutics. Here, we overview the role of molecular mimicry in pathogen host evasion as well as types of molecular mimicry mechanisms that emerged during evolution.


Assuntos
Imunidade , Mimetismo Molecular , Proteínas/imunologia , Proteínas/metabolismo , Animais , Evolução Biológica , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares
3.
PLoS Comput Biol ; 13(10): e1005579, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29023448

RESUMO

Hundreds of different species colonize multicellular organisms making them "metaorganisms". A growing body of data supports the role of microbiota in health and in disease. Grasping the principles of host-microbiota interactions (HMIs) at the molecular level is important since it may provide insights into the mechanisms of infections. The crosstalk between the host and the microbiota may help resolve puzzling questions such as how a microorganism can contribute to both health and disease. Integrated superorganism networks that consider host and microbiota as a whole-may uncover their code, clarifying perhaps the most fundamental question: how they modulate immune surveillance. Within this framework, structural HMI networks can uniquely identify potential microbial effectors that target distinct host nodes or interfere with endogenous host interactions, as well as how mutations on either host or microbial proteins affect the interaction. Furthermore, structural HMIs can help identify master host cell regulator nodes and modules whose tweaking by the microbes promote aberrant activity. Collectively, these data can delineate pathogenic mechanisms and thereby help maximize beneficial therapeutics. To date, challenges in experimental techniques limit large-scale characterization of HMIs. Here we highlight an area in its infancy which we believe will increasingly engage the computational community: predicting interactions across kingdoms, and mapping these on the host cellular networks to figure out how commensal and pathogenic microbiota modulate the host signaling and broadly cross-species consequences.


Assuntos
Microbiota/fisiologia , Modelos Moleculares , Mimetismo Molecular , Mapas de Interação de Proteínas/fisiologia , Simbiose/fisiologia , Animais , Biologia Computacional , Humanos , Camundongos , Receptores Toll-Like
4.
J Biol Chem ; 291(32): 16753-65, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325703

RESUMO

Autophagy is biological mechanism allowing recycling of long-lived proteins, abnormal protein aggregates, and damaged organelles under cellular stress conditions. Following sequestration in double- or multimembrane autophagic vesicles, the cargo is delivered to lysosomes for degradation. ATG5 is a key component of an E3-like ATG12-ATG5-ATG16 protein complex that catalyzes conjugation of the MAP1LC3 protein to lipids, thus controlling autophagic vesicle formation and expansion. Accumulating data indicate that ATG5 is a convergence point for autophagy regulation. Here, we describe the scaffold protein RACK1 (receptor activated C-kinase 1, GNB2L1) as a novel ATG5 interactor and an autophagy protein. Using several independent techniques, we showed that RACK1 interacted with ATG5. Importantly, classical autophagy inducers (starvation or mammalian target of rapamycin blockage) stimulated RACK1-ATG5 interaction. Knockdown of RACK1 or prevention of its binding to ATG5 using mutagenesis blocked autophagy activation. Therefore, the scaffold protein RACK1 is a new ATG5-interacting protein and an important and novel component of the autophagy pathways.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Proteínas de Neoplasias/genética , Ligação Proteica , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética
5.
Biochim Biophys Acta ; 1860(11 Pt B): 2646-55, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27208423

RESUMO

BACKGROUND: The tumor necrosis factor receptor (TNFR) associated factor 3 (TRAF3) is a key node in innate and adaptive immune signaling pathways. TRAF3 negatively regulates the activation of the canonical and non-canonical NF-κB pathways and is one of the key proteins in antiviral immunity. SCOPE OF REVIEW: Here we provide a structural overview of TRAF3 signaling in terms of its competitive binding and consequences to the cellular network. For completion, we also include molecular mimicry of TRAF3 physiological partners by some viral proteins. MAJOR CONCLUSIONS: By out-competing host partners, viral proteins aim to subvert TRAF3 antiviral action. Mechanistically, dynamic, competitive binding by the organism's own proteins and same-site adaptive pathogen mimicry follow the same conformational selection principles. GENERAL SIGNIFICANCE: Our premise is that irrespective of the eliciting event - physiological or acquired pathogenic trait - pathway activation (or suppression) may embrace similar conformational principles. However, even though here we largely focus on competitive binding at a shared site, similar to physiological signaling other pathogen subversion mechanisms can also be at play. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.


Assuntos
Ligação Competitiva/fisiologia , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/metabolismo , Humanos , Mimetismo Molecular/fisiologia , NF-kappa B/metabolismo , Ligação Proteica/fisiologia , Proteínas Virais/metabolismo , Viroses/metabolismo
6.
Biophys J ; 109(6): 1214-26, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276688

RESUMO

Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.


Assuntos
Inflamação/metabolismo , Receptores Toll-Like/metabolismo , Arabidopsis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Modelos Moleculares , Mutação , Paracoccus denitrificans , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Receptores Toll-Like/química , Receptores Toll-Like/genética
7.
Semin Cancer Biol ; 23(4): 243-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23712403

RESUMO

Inflammation, the first line of defense against pathogens can contribute to all phases of tumorigenesis, including tumor initiation, promotion and metastasis. Within this framework, the Toll-like receptor (TLR) pathway plays a central role in inflammation and cancer. Although extremely useful, the classical representation of this, and other pathways in the cellular network in terms of nodes (proteins) and edges (interactions) is incomplete. Structural pathways can help complete missing parts of such diagrams: they demonstrate in detail how signals coming from different upstream pathways merge and propagate downstream, how parallel pathways compensate each other in drug resistant mutants, how multi-subunit signaling complexes form and in particular why they are needed and how they work, how allosteric events can control these proteins and their pathways, and intricate details of feedback loops and how kick in. They can also explain the mechanisms of some oncogenic SNP mutations. Constructing structural pathways is a challenging task. Here, our goal is to provide an overview of inflammation and cancer from the structural standpoint, focusing on the TLR pathway. We use the powerful PRISM (PRotein Interactions by Structural Matching) tool to reveal important structural information of interactions in and within key orchestrators of the TLR pathway, such as MyD88.


Assuntos
Inflamação/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Inflamação/genética , Modelos Moleculares , Mutação , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Receptores Toll-Like/química , Receptores Toll-Like/genética
8.
BMC Genomics ; 15 Suppl 4: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25056661

RESUMO

BACKGROUND: Inflammation has significant roles in all phases of tumor development, including initiation, progression and metastasis. Interleukin-10 (IL-10) is a well-known immuno-modulatory cytokine with an anti-inflammatory activity. Lack of IL-10 allows induction of pro-inflammatory cytokines and hinders anti-tumor immunity, thereby favoring tumor growth. The IL-10 network is among the most important paths linking cancer and inflammation. The simple node-and-edge network representation is useful, but limited, hampering the understanding of the mechanistic details of signaling pathways. Structural networks complete the missing parts, and provide details. The IL-10 structural network may shed light on the mechanisms through which disease-related mutations work and the pathogenesis of malignancies. RESULTS: Using PRISM (a PRotein Interactions by Structural Matching tool), we constructed the structural network of IL-10, which includes its first and second degree protein neighbor interactions. We predicted the structures of complexes involved in these interactions, thereby enriching the available structural data. In order to reveal the significance of the interactions, we exploited mutations identified in cancer patients, mapping them onto key proteins of this network. We analyzed the effect of these mutations on the interactions, and demonstrated a relation between these and inflammation and cancer. Our results suggest that mutations that disrupt the interactions of IL-10 with its receptors (IL-10RA and IL-10RB) and α2-macroglobulin (A2M) may enhance inflammation and modulate anti-tumor immunity. Likewise, mutations that weaken the A2M-APP (amyloid precursor protein) association may increase the proliferative effect of APP through preventing ß-amyloid degradation by the A2M receptor, and mutations that abolish the A2M-Kallikrein-13 (KLK13) interaction may lead to cell proliferation and metastasis through the destructive effect of KLK13 on the extracellular matrix. CONCLUSIONS: Prediction of protein-protein interactions through structural matching can enrich the available cellular pathways. In addition, the structural data of protein complexes suggest how oncogenic mutations influence the interactions and explain their potential impact on IL-10 signaling in cancer and inflammation.


Assuntos
Inflamação/patologia , Interleucina-10/metabolismo , Neoplasias/patologia , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Biologia Computacional , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Bases de Dados de Proteínas , Humanos , Inflamação/metabolismo , Interleucina-10/química , Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/química , Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Subunidade beta de Receptor de Interleucina-10/química , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Mutagênese , Neoplasias/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais , Termodinâmica , alfa-Macroglobulinas/metabolismo
9.
J Mol Biol ; 432(11): 3395-3403, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061934

RESUMO

Microbes, commensals, and pathogens, control the numerous functions in the host cells. They can alter host signaling and modulate immune surveillance by interacting with the host proteins. For shedding light on the contribution of microbes to health and disease, it is vital to discern how microbial proteins rewire host signaling and through which host proteins they do this. Host-Microbe Interaction PREDictor (HMI-PRED) is a user-friendly web server for structural prediction of protein-protein interactions (PPIs) between the host and a microbial species, including bacteria, viruses, fungi, and protozoa. HMI-PRED relies on "interface mimicry" through which the microbial proteins hijack host binding surfaces. Given the structure of a microbial protein of interest, HMI-PRED will return structural models of potential host-microbe interaction (HMI) complexes, the list of host endogenous and exogenous PPIs that can be disrupted, and tissue expression of the microbe-targeted host proteins. The server also allows users to upload homology models of microbial proteins. Broadly, it aims at large-scale, efficient identification of HMIs. The prediction results are stored in a repository for community access. HMI-PRED is free and available at https://interactome.ku.edu.tr/hmi.


Assuntos
Bactérias/genética , Interações entre Hospedeiro e Microrganismos/genética , Mapeamento de Interação de Proteínas , Software , Bactérias/patogenicidade , Humanos , Internet
10.
Methods Mol Biol ; 1851: 317-335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30298406

RESUMO

About 20% of the cancer incidences worldwide have been estimated to be associated with infections. However, the molecular mechanisms of exactly how they contribute to host tumorigenesis are still unknown. To evade host defense, pathogens hijack host proteins at different levels: sequence, structure, motif, and binding surface, i.e., interface. Interface similarity allows pathogen proteins to compete with host counterparts to bind to a target protein, rewire physiological signaling, and result in persistent infections, as well as cancer. Identification of host-pathogen interactions (HPIs)-along with their structural details at atomic resolution-may provide mechanistic insight into pathogen-driven cancers and innovate therapeutic intervention. HPI data including structural details is scarce and large-scale experimental detection is challenging. Therefore, there is an urgent and mounting need for efficient and robust computational approaches to predict HPIs and their complex (bound) structures. In this chapter, we review the first and currently only interface-based computational approach to identify novel HPIs. The concept of interface mimicry promises to identify more HPIs than complete sequence or structural similarity. We illustrate this concept with a case study on Kaposi's sarcoma herpesvirus (KSHV) to elucidate how it subverts host immunity and helps contribute to malignant transformation of the host cells.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Mimetismo Molecular , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
11.
Front Oncol ; 9: 1236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803618

RESUMO

Oncoviruses rewire host pathways to subvert host immunity and promote their survival and proliferation. However, exactly how is challenging to understand. Here, by employing the first and to date only interface-based host-microbe interaction (HMI) prediction method, we explore a pivotal strategy oncoviruses use to drive cancer: mimicking binding surfaces-interfaces-of human proteins. We show that oncoviruses can target key human network proteins and transform cells by acquisition of cancer hallmarks. Experimental large-scale mapping of HMIs is difficult and individual HMIs do not permit in-depth grasp of tumorigenic virulence mechanisms. Our computational approach is tractable and 3D structural HMI models can help elucidate pathogenesis mechanisms and facilitate drug design. We observe that many host proteins are unique targets for certain oncoviruses, whereas others are common to several, suggesting similar infectious strategies. A rough estimation of our false discovery rate based on the tissue expression of oncovirus-targeted human proteins is 25%.

12.
Cancer Immunol Res ; 7(11): 1760-1774, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31624067

RESUMO

Head and neck squamous cell carcinomas (HNSCC) promote inflammation in the tumor microenvironment through aberrant NF-κB activation, but the genomic alterations and pathway networks that modulate NF-κB signaling have not been fully dissected. Here, we analyzed genome and transcriptome alterations of 279 HNSCC specimens from The Cancer Genome Atlas (TCGA) cohort and identified 61 genes involved in NF-κB and inflammatory pathways. The top 30 altered genes were distributed across 96% of HNSCC samples, and their expression was often correlated with genomic copy-number alterations (CNA). Ten of the amplified genes were associated with human papilloma virus (HPV) status. We sequenced 15 HPV- and 11 HPV+ human HNSCC cell lines, and three oral mucosa keratinocyte lines, and supervised clustering revealed that 28 of 61 genes exhibit altered expression patterns concordant with HNSCC tissues and distinct signatures related to their HPV status. RNAi screening using an NF-κB reporter line identified 16 genes that are induced by TNFα or Lymphotoxin-ß (LTß) and implicated in the classic and/or alternative NF-κB pathways. Knockdown of TNFR, LTBR, or selected downstream signaling components established cross-talk between the classic and alternative NF-κB pathways. TNFα and LTß induced differential gene expression involving the NF-κB, IFNγ, and STAT pathways, inflammatory cytokines, and metastasis-related genes. Improved survival was observed in HNSCC patients with elevated gene expression in T-cell activation, immune checkpoints, and IFNγ and STAT pathways. These gene signatures of NF-κB activation, which modulate inflammation and responses to the immune therapy, could serve as potential biomarkers in future clinical trials.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Linhagem Celular , Proliferação de Células , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Feminino , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Inflamação , Interferon gama/metabolismo , Linfotoxina-beta/metabolismo , Masculino , NF-kappa B/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Fatores de Transcrição STAT/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
13.
J Mol Biol ; 429(24): 3925-3941, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29106933

RESUMO

There is a strong correlation between some pathogens and certain cancer types. One example is Helicobacter pylori and gastric cancer. Exactly how they contribute to host tumorigenesis is, however, a mystery. Pathogens often interact with the host through proteins. To subvert defense, they may mimic host proteins at the sequence, structure, motif, or interface levels. Interface similarity permits pathogen proteins to compete with those of the host for a target protein and thereby alter the host signaling. Detection of host-pathogen interactions (HPIs) and mapping the re-wired superorganism HPI network-with structural details-can provide unprecedented clues to the underlying mechanisms and help therapeutics. Here, we describe the first computational approach exploiting solely interface mimicry to model potential HPIs. Interface mimicry can identify more HPIs than sequence or complete structural similarity since it appears more common than the other mimicry types. We illustrate the usefulness of this concept by modeling HPIs of H. pylori to understand how they modulate host immunity, persist lifelong, and contribute to tumorigenesis. H. pylori proteins interfere with multiple host pathways as they target several host hub proteins. Our results help illuminate the structural basis of resistance to apoptosis, immune evasion, and loss of cell junctions seen in H. pylori-infected host cells.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno , Mimetismo Molecular , Neoplasias Gástricas/etiologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Neoplasias Gástricas/metabolismo
14.
Protein Eng Des Sel ; 29(9): 347-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503954

RESUMO

MyD88 is an essential adaptor protein, which mediates the signaling of the toll-like and interleukin-1 receptors' superfamily. The MyD88 L252P (L265P) mutation has been identified in diffuse large B-cell lymphoma. The identification of this mutation has been a major advance in the diagnosis of patients with aldenstrom macroglobulinemia and related lymphoid neoplasms. Here we used computational methods to characterize the conformational effects of the mutation. Our molecular dynamics simulations revealed that the mutation allosterically quenched the global conformational dynamics of the toll/IL-1R (TIR) domain, and readjusted its salt bridges and dynamic community network. Specifically, the mutation changed the orientation and reduced the fluctuation of α-helix 3, possibly through eliminating/weakening ~8 salt bridges and enhancing the salt bridge D225-K258. Using the energy landscape of the TIR domains of MyD88, we identified two dynamic conformational basins, which correspond to the binding sites used in homo- and hetero-oligomerization, respectively. Our results indicate that the mutation stabilizes the core of the homo-dimer interface of the MyD88-TIR domain, and increases the population of homo-dimer-compatible conformational states in MyD88 family proteins. However, the dampened motion restricts its ability to heterodimerize with other TIR domains, thereby curtailing physiological signaling. In conclusion, the L252P both shifts the landscape toward homo-dimerization and restrains the dynamics of the MyD88-TIR domain, which disfavors its hetero-dimerization with other TIR domains. We further put these observations within the framework of MyD88-mediated cell signaling.


Assuntos
Mutação , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias/metabolismo , Multimerização Proteica , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Fator 88 de Diferenciação Mieloide/genética , Neoplasias/patologia , Análise de Componente Principal , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais
15.
Curr Opin Struct Biol ; 35: 87-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26539658

RESUMO

The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.


Assuntos
Simulação de Acoplamento Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo
16.
Sci Rep ; 5: 13128, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293885

RESUMO

Activated Toll-like receptors (TLRs) cluster in lipid rafts and induce pro- and anti-tumor responses. The organization of the assembly is critical to the understanding of how these key receptors control major signaling pathways in the cell. Although several models for individual interactions were proposed, the entire TIR-domain signalosome architecture has not been worked out, possibly due to its complexity. We employ a powerful algorithm, crystal structures and experimental data to model the TLR4 and its cluster. The architecture that we obtain with 8 MyD88 molecules provides the structural basis for the MyD88-templated myddosome helical assembly and receptor clustering; it also provides clues to pro- and anti-inflammatory signaling pathways branching at the signalosome level to Mal/MyD88 and TRAM/TRIF pro- and anti-inflammatory pathways. The assembly of MyD88 death domain (DD) with TRAF3 (anti-viral/anti-inflammatory) and TRAF6 (pro-inflammatory) suggest that TRAF3/TRAF6 binding sites on MyD88 DD partially overlap, as do IRAK4 and FADD. Significantly, the organization illuminates mechanisms of oncogenic mutations, demonstrates that almost all TLR4 parallel pathways are competitive and clarifies decisions at pathway branching points. The architectures are compatible with the currently-available experimental data and provide compelling insights into signaling in cancer and inflammation pathways.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Humanos , Imageamento Tridimensional , Modelos Biológicos , Modelos Moleculares , Fator 88 de Diferenciação Mieloide , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
17.
Cancers (Basel) ; 6(2): 663-83, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24670367

RESUMO

Cytokines are messengers between tissues and the immune system. They play essential roles in cancer initiation, promotion, metastasis, and immunotherapy. Structural pathways of cytokine signaling which contain their interactions can help understand their action in the tumor microenvironment. Here, our aim is to provide an overview of the role of cytokines in tumor development from a structural perspective. Atomic details of protein-protein interactions can help in understanding how an upstream signal is transduced; how higher-order oligomerization modes of proteins can influence their function; how mutations, inhibitors or antagonists can change cellular consequences; why the same protein can lead to distinct outcomes, and which alternative parallel pathways can take over. They also help to design drugs/inhibitors against proteins de novo or by mimicking natural antagonists as in the case of interferon-γ. Since the structural database (PDB) is limited, structural pathways are largely built from a series of predicted binary protein-protein interactions. Below, to illustrate how protein-protein interactions can help illuminate roles played by cytokines, we model some cytokine interaction complexes exploiting a powerful algorithm (PRotein Interactions by Structural Matching-PRISM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA