Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 81(4): 784-800.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33412112

RESUMO

DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.


Assuntos
Quebras de DNA de Cadeia Simples , Replicação do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Proteína-Arginina N-Metiltransferases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo
2.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567999

RESUMO

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Assuntos
Biotinilação/métodos , Dano ao DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Fatores de Transcrição/metabolismo , Carbono-Nitrogênio Ligases/genética , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamento de Genes , Humanos , Proteína Homóloga a MRE11/metabolismo , Ligação Proteica , Transporte Proteico/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Mol Cell ; 70(6): 995-1007.e11, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910111

RESUMO

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


Assuntos
Receptores Proteína Tirosina Quinases/fisiologia , Receptor EphA4/metabolismo , Domínios de Homologia de src/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Comunicação Celular , Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Proteínas Oncogênicas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tirosina/metabolismo
4.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321934

RESUMO

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Miogenina , RNA Mensageiro , Tanquirases , Tanquirases/metabolismo , Tanquirases/genética , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Desenvolvimento Muscular/genética , Animais , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Estabilidade de RNA/genética , Poli ADP Ribosilação/genética , Linhagem Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HEK293
5.
FASEB J ; 38(6): e23556, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498348

RESUMO

PARP-1 over-activation results in cell death via excessive PAR generation in different cell types, including neurons following brain ischemia. Glycolysis, mitochondrial function, and redox balance are key cellular processes altered in brain ischemia. Studies show that PAR generated after PARP-1 over-activation can bind hexokinase-1 (HK-1) and result in glycolytic defects and subsequent mitochondrial dysfunction. HK-1 is the neuronal hexokinase and catalyzes the first reaction of glycolysis, converting glucose to glucose-6-phosphate (G6P), a common substrate for glycolysis, and the pentose phosphate pathway (PPP). PPP is critical in maintaining NADPH and GSH levels via G6P dehydrogenase activity. Therefore, defects in HK-1 will not only decrease cellular bioenergetics but will also cause redox imbalance due to the depletion of GSH. In brain ischemia, whether PAR-mediated inhibition of HK-1 results in bioenergetics defects and redox imbalance is not known. We used oxygen-glucose deprivation (OGD) in mouse cortical neurons to mimic brain ischemia in neuronal cultures and observed that PARP-1 activation via PAR formation alters glycolysis, mitochondrial function, and redox homeostasis in neurons. We used pharmacological inhibition of PARP-1 and adenoviral-mediated overexpression of wild-type HK-1 (wtHK-1) and PAR-binding mutant HK-1 (pbmHK-1). Our data show that PAR inhibition or overexpression of HK-1 significantly improves glycolysis, mitochondrial function, redox homeostasis, and cell survival in mouse cortical neurons exposed to OGD. These results suggest that PAR binding and inhibition of HK-1 during OGD drive bioenergetic defects in neurons due to inhibition of glycolysis and impairment of mitochondrial function.


Assuntos
Isquemia Encefálica , Oxigênio , Camundongos , Animais , Oxigênio/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Glicólise , Neurônios/metabolismo , Oxirredução
6.
Nucleic Acids Res ; 51(5): 2215-2237, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36794853

RESUMO

PARP1 is a DNA-dependent ADP-Ribose transferase with ADP-ribosylation activity that is triggered by DNA breaks and non-B DNA structures to mediate their resolution. PARP1 was also recently identified as a component of the R-loop-associated protein-protein interaction network, suggesting a potential role for PARP1 in resolving this structure. R-loops are three-stranded nucleic acid structures that consist of a RNA-DNA hybrid and a displaced non-template DNA strand. R-loops are involved in crucial physiological processes but can also be a source of genome instability if persistently unresolved. In this study, we demonstrate that PARP1 binds R-loops in vitro and associates with R-loop formation sites in cells which activates its ADP-ribosylation activity. Conversely, PARP1 inhibition or genetic depletion causes an accumulation of unresolved R-loops which promotes genomic instability. Our study reveals that PARP1 is a novel sensor for R-loops and highlights that PARP1 is a suppressor of R-loop-associated genomic instability.


Assuntos
Instabilidade Genômica , Poli(ADP-Ribose) Polimerase-1 , Estruturas R-Loop , Humanos , DNA/química , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA/química
7.
Nucleic Acids Res ; 51(20): 11056-11079, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823600

RESUMO

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Assuntos
Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo
8.
Nano Lett ; 24(10): 2961-2971, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477058

RESUMO

The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.


Assuntos
Lipossomos , Nanopartículas , Camundongos , Animais , Humanos , Nanopartículas/química , RNA Interferente Pequeno/genética , Colesterol/química
9.
Eur Respir J ; 63(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097206

RESUMO

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Diabetes Mellitus Tipo 2/genética , Pulmão , Volume Expiratório Forçado/genética , Espirometria , Capacidade Vital
10.
Respir Res ; 25(1): 85, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336742

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. METHODS: In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. RESULTS: SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (ß=-3.384 [-4.877, -1.892]), DLCOc (ß=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (ß=-6.362 [-9.055, -3.670]) than non-COPD (ß=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (ß=-0.550 [-0.909, -0.191]; ß=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). CONCLUSIONS: Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. TAKE-HOME MESSAGE: Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fumar/efeitos adversos , Fumar/epidemiologia , Fumar Tabaco , Pele , Produtos Finais de Glicação Avançada
11.
Allergy ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38923444

RESUMO

BACKGROUND: Biologic asthma therapies reduce exacerbations and long-term oral corticosteroids (LTOCS) use in randomized controlled trials (RCTs); however, there are limited data on outcomes among patients ineligible for RCTs. Hence, we investigated responsiveness to biologics in a real-world population of adults with severe asthma. METHODS: Adults in the International Severe Asthma Registry (ISAR) with ≥24 weeks of follow-up were grouped into those who did, or did not, initiate biologics (anti-IgE, anti-IL5/IL5R, anti-IL4/13). Treatment responses were examined across four domains: forced expiratory volume in 1 second (FEV1) increase by ≥100 mL, improved asthma control, annualized exacerbation rate (AER) reduction ≥50%, and any LTOCS dose reduction. Super-response criteria were: FEV1 increase by ≥500 mL, new well-controlled asthma, no exacerbations, and LTOCS cessation or tapering to ≤5 mg/day. RESULTS: 5.3% of ISAR patients met basic RCT inclusion criteria; 2116/8451 started biologics. Biologic initiators had worse baseline impairment than non-initiators, despite having similar biomarker levels. Half or more of initiators had treatment responses: 59% AER reduction, 54% FEV1 increase, 49% improved control, 49% reduced LTOCS, of which 32%, 19%, 30%, and 39%, respectively, were super-responses. Responses/super-responses were more frequent in biologic initiators than in non-initiators; nevertheless, ~40-50% of initiators did not meet response criteria. CONCLUSIONS: Most patients with severe asthma are ineligible for RCTs of biologic therapies. Biologics are initiated in patients who have worse baseline impairments than non-initiators despite similar biomarker levels. Although biologic initiators exhibited clinical responses and super-responses in all outcome domains, 40-50% did not meet the response criteria.

12.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692124

RESUMO

Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP ribose) polymerase (PARP)-dependent manner, to DNA breaks and promotes ATR/CHK1 signaling, DNA-end resection, and subsequent homologous recombination. Moreover, we identify E4F1 as a regulator of the ATP-dependent chromatin remodeling SWI/SNF complex in DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and together with PARP-1 mediates its recruitment to DNA lesions. We also report that a proportion of human breast cancers show amplification and overexpression of E4F1 or BRG1 that are mutually exclusive with BRCA1/2 alterations. Together, these results reveal a function of E4F1 in the DNA damage response that orchestrates proper signaling and repair of double-strand breaks and document a molecular mechanism for its essential role in maintaining genome integrity and cell survival.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Mama/genética , Proliferação de Células , Sobrevivência Celular , Montagem e Desmontagem da Cromatina , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Recombinação Homóloga , Humanos , Ligação Proteica , Proteínas Repressoras/deficiência , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência
13.
Hum Brain Mapp ; 44(11): 4256-4271, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227019

RESUMO

Several studies employ multi-site rs-fMRI data for major depressive disorder (MDD) identification, with a specific site as the to-be-analyzed target domain and other site(s) as the source domain. But they usually suffer from significant inter-site heterogeneity caused by the use of different scanners and/or scanning protocols and fail to build generalizable models that can well adapt to multiple target domains. In this article, we propose a dual-expert fMRI harmonization (DFH) framework for automated MDD diagnosis. Our DFH is designed to simultaneously exploit data from a single labeled source domain/site and two unlabeled target domains for mitigating data distribution differences across domains. Specifically, the DFH consists of a domain-generic student model and two domain-specific teacher/expert models that are jointly trained to perform knowledge distillation through a deep collaborative learning module. A student model with strong generalizability is finally derived, which can be well adapted to unseen target domains and analysis of other brain diseases. To the best of our knowledge, this is among the first attempts to investigate multi-target fMRI harmonization for MDD diagnosis. Comprehensive experiments on 836 subjects with rs-fMRI data from 3 different sites show the superiority of our method. The discriminative brain functional connectivities identified by our method could be regarded as potential biomarkers for fMRI-related MDD diagnosis.


Assuntos
Encefalopatias , Transtorno Depressivo Maior , Práticas Interdisciplinares , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
14.
Eur Respir J ; 61(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36549711

RESUMO

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Pulmão , Morte Celular , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
15.
Br J Dermatol ; 188(3): 390-395, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36763776

RESUMO

BACKGROUND: Looking older for one's chronological age is associated with a higher mortality rate. Yet it remains unclear how perceived facial age relates to morbidity and the degree to which facial ageing reflects systemic ageing of the human body. OBJECTIVES: To investigate the association between ΔPA and age-related morbidities of different organ systems, where ΔPA represents the difference between perceived age (PA) and chronological age. METHODS: We performed a cross-sectional analysis on data from the Rotterdam Study, a population-based cohort study in the Netherlands. High-resolution facial photographs of 2679 men and women aged 51.5-87.8 years of European descent were used to assess PA. PA was estimated and scored in 5-year categories using these photographs by a panel of men and women who were blinded for chronological age and medical history. A linear mixed model was used to generate the mean PAs. The difference between the mean PA and chronological age was calculated (ΔPA), where a higher (positive) ΔPA means that the person looks younger for their age and a lower (negative) ΔPA that the person looks older. ΔPA was tested as a continuous variable for association with ageing-related morbidities including cardiovascular, pulmonary, ophthalmological, neurocognitive, renal, skeletal and auditory morbidities in separate regression analyses, adjusted for age and sex (model 1) and additionally for body mass index, smoking and sun exposure (model 2). RESULTS: We observed 5-year higher ΔPA (i.e. looking younger by 5 years for one's age) to be associated with less osteoporosis [odds ratio (OR) 0.76, 95% confidence interval (CI) 0.62-0.93], less chronic obstructive pulmonary disease (OR 0.85, 95% CI 0.77-0.95), less age-related hearing loss (model 2; B = -0.76, 95% CI -1.35 to -0.17) and fewer cataracts (OR 0.84, 95% CI 0.73-0.97), but with better global cognitive functioning (g-factor; model 2; B = 0.07, 95% CI 0.04-0.10). CONCLUSIONS: PA is associated with multiple morbidities and better cognitive function, suggesting that systemic ageing and cognitive ageing are, to an extent, externally visible in the human face.


Assuntos
Envelhecimento , Envelhecimento da Pele , Idoso , Pessoa de Meia-Idade , Masculino , Humanos , Feminino , Estudos de Coortes , Estudos Transversais , Fácies , Morbidade
16.
Am J Respir Crit Care Med ; 205(1): 17-35, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658302

RESUMO

The Global Initiative for Asthma (GINA) Strategy Report provides clinicians with an annually updated evidence-based strategy for asthma management and prevention, which can be adapted for local circumstances (e.g., medication availability). This article summarizes key recommendations from GINA 2021, and the evidence underpinning recent changes. GINA recommends that asthma in adults and adolescents should not be treated solely with short-acting ß2-agonist (SABA), because of the risks of SABA-only treatment and SABA overuse, and evidence for benefit of inhaled corticosteroids (ICS). Large trials show that as-needed combination ICS-formoterol reduces severe exacerbations by ⩾60% in mild asthma compared with SABA alone, with similar exacerbation, symptom, lung function, and inflammatory outcomes as daily ICS plus as-needed SABA. Key changes in GINA 2021 include division of the treatment figure for adults and adolescents into two tracks. Track 1 (preferred) has low-dose ICS-formoterol as the reliever at all steps: as needed only in Steps 1-2 (mild asthma), and with daily maintenance ICS-formoterol (maintenance-and-reliever therapy, "MART") in Steps 3-5. Track 2 (alternative) has as-needed SABA across all steps, plus regular ICS (Step 2) or ICS-long-acting ß2-agonist (Steps 3-5). For adults with moderate-to-severe asthma, GINA makes additional recommendations in Step 5 for add-on long-acting muscarinic antagonists and azithromycin, with add-on biologic therapies for severe asthma. For children 6-11 years, new treatment options are added at Steps 3-4. Across all age groups and levels of severity, regular personalized assessment, treatment of modifiable risk factors, self-management education, skills training, appropriate medication adjustment, and review remain essential to optimize asthma outcomes.


Assuntos
Asma/diagnóstico , Asma/terapia , Adolescente , Adulto , Antiasmáticos/uso terapêutico , Asma/etiologia , Criança , Pré-Escolar , Terapia Combinada , Progressão da Doença , Quimioterapia Combinada , Humanos , Lactente , Gravidade do Paciente , Guias de Prática Clínica como Assunto , Fatores de Risco , Autocuidado
17.
PLoS Genet ; 16(11): e1009183, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137104

RESUMO

Loss of von Hippel-Lindau protein pVHL function promotes VHL diseases, including sporadic and inherited clear cell Renal Cell Carcinoma (ccRCC). Mechanisms controlling pVHL function and regulation, including folding and stability, remain elusive. Here, we have identified the conserved cochaperone prefoldin complex in a screen for pVHL interactors. The prefoldin complex delivers non-native proteins to the chaperonin T-complex-protein-1-ring (TRiC) or Cytosolic Chaperonin containing TCP-1 (CCT) to assist folding of newly synthesized polypeptides. The pVHL-prefoldin interaction was confirmed in human cells and prefoldin knock-down reduced pVHL expression levels. Furthermore, when pVHL was expressed in Schizosaccharomyces pombe, all prefoldin mutants promoted its aggregation. We mapped the interaction of prefoldin with pVHL at the exon2-exon3 junction encoded region. Low levels of the PFDN3 prefoldin subunit were associated with poor survival in ccRCC patients harboring VHL mutations. Our results link the prefoldin complex with pVHL folding and this may impact VHL diseases progression.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Neoplasias Renais/genética , Chaperonas Moleculares/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Chaperonina com TCP-1 , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Chaperonas Moleculares/genética , Mutação , Ligação Proteica/genética , Dobramento de Proteína , Proteólise , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
18.
BMC Med ; 20(1): 304, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36071423

RESUMO

BACKGROUND: Multimorbidity poses a major challenge for care coordination. However, data on what non-communicable diseases lead to multimorbidity, and whether the lifetime risk differs between men and women are lacking. We determined sex-specific differences in multimorbidity patterns and estimated sex-specific lifetime risk of multimorbidity in the general population. METHODS: We followed 6,094 participants from the Rotterdam Study aged 45 years and older for the occurrence of ten diseases (cancer, coronary heart disease, stroke, chronic obstructive pulmonary disease, depression, diabetes, dementia, asthma, heart failure, parkinsonism). We visualised participants' trajectories from a single disease to multimorbidity and the most frequent combinations of diseases. We calculated sex-specific lifetime risk of multimorbidity, considering multimorbidity involving only somatic diseases (1) affecting the same organ system, (2) affecting different organ systems, and (3) multimorbidity involving depression. RESULTS: Over the follow-up period (1993-2016, median years of follow-up 9.2), we observed 6334 disease events. Of the study population, 10.3% had three or more diseases, and 27.9% had two or more diseases. The most frequent pair of co-occurring diseases among men was COPD and cancer (12.5% of participants with multimorbidity), the most frequent pair of diseases among women was depression and dementia (14.9%). The lifetime risk of multimorbidity was similar among men (66.0%, 95% CI: 63.2-68.8%) and women (65.1%, 95% CI: 62.5-67.7%), yet the risk of multimorbidity with depression was higher for women (30.9%, 95% CI: 28.4-33.5%, vs. 17.5%, 95% CI: 15.2-20.1%). The risk of multimorbidity with two diseases affecting the same organ is relatively low for both sexes (4.2% (95% CI: 3.2-5.5%) for men and 4.5% (95% CI: 3.5-5.7%) for women). CONCLUSIONS: Two thirds of people over 45 will develop multimorbidity in their remaining lifetime, with women at nearly double the risk of multimorbidity involving depression than men. These findings call for programmes of integrated care to consider sex-specific differences to ensure men and women are served equally.


Assuntos
Demência , Neoplasias , Demência/epidemiologia , Feminino , Humanos , Masculino , Multimorbidade , Neoplasias/epidemiologia , Prevalência , Estudos Prospectivos
19.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33158944

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Assuntos
N-Glicosil Hidrolases/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Coronavirus/química , Coronavirus/enzimologia , Coronavirus/metabolismo , Cristalografia por Raios X , Humanos , Hidrólise , Cinética , N-Glicosil Hidrolases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/química
20.
Clin Exp Allergy ; 52(1): 33-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428814

RESUMO

BACKGROUND: Inhaled corticosteroids (ICS) are a cornerstone of asthma treatment. However, their efficacy is characterized by wide variability in individual responses. OBJECTIVE: We investigated the association between genetic variants and risk of exacerbations in adults with asthma and how this association is affected by ICS treatment. METHODS: We investigated the pharmacogenetic effect of 10 single nucleotide polymorphisms (SNPs) selected from the literature, including SNPs previously associated with response to ICS (assessed by change in lung function or exacerbations) and novel asthma risk alleles involved in inflammatory pathways, within all adults with asthma from the Dutch population-based Rotterdam study with replication in the American GERA cohort. The interaction effects of the SNPs with ICS on the incidence of asthma exacerbations were assessed using hurdle models adjusting for age, sex, BMI, smoking and treatment step according to the GINA guidelines. Haplotype analyses were also conducted for the SNPs located on the same chromosome. RESULTS: rs242941 (CRHR1) homozygotes for the minor allele (A) showed a significant, replicated increased risk for frequent exacerbations (RR = 6.11, P < 0.005). In contrast, rs1134481 T allele within TBXT (chromosome 6, member of a family associated with embryonic lung development) showed better response with ICS. rs37973 G allele (GLCCI1) showed a significantly poorer response on ICS within the discovery cohort, which was also significant but in the opposite direction in the replication cohort. CONCLUSION: rs242941 in CRHR1 was associated with poor ICS response. Conversely, TBXT variants were associated with improved ICS response. These associations may reveal specific endotypes, potentially allowing prediction of exacerbation risk and ICS response.


Assuntos
Antiasmáticos , Asma , Administração por Inalação , Corticosteroides/efeitos adversos , Adulto , Antiasmáticos/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Humanos , Farmacogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA