Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 92: 163-175, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430119

RESUMO

The soil dissipation of the widely used herbicides S-metolachlor (SM) and butachlor (BUT) was evaluated in laboratory microcosms at two environmentally relevant doses (15 and 150 µg/g) and for two agricultural soils (crop and paddy). Over 80% of SM and BUT were dissipated within 60 and 30 days, respectively, except in experiments with crop soil at 150 µg/g. Based on compound-specific isotope analysis (CSIA) and observed dissipation, biodegradation was the main process responsible for the observed decrease of SM and BUT in the paddy soil. For SM, biodegradation dominated over other dissipation processes, with changes of carbon isotope ratios (Δδ13C) of up to 6.5‰ after 60 days, and concomitant production of ethane sulfonic acid (ESA) and oxanilic acid (OXA) transformation products. In crop soil experiments, biodegradation of SM occurred to a lesser extent than in paddy soil, and sorption was the main driver of apparent BUT dissipation. Sequencing of the 16S rRNA gene showed that soil type and duration of herbicide exposure were the main determinants of bacterial community variation. In contrast, herbicide identity and spiking dose had no significant effect. In paddy soil experiments, a high (4:1, V/V) ESA to OXA ratio for SM was observed, and phylotypes assigned to anaerobic Clostridiales and sulfur reducers such as Desulfuromonadales and Syntrophobacterales were dominant for both herbicides. Crop soil microcosms, in contrast, were associated with a reverse, low (1:3, V/V) ratio of ESA to OXA for SM, and Alphaproteobacteria, Actinobacteria, and Bacillales dominated regardless of the herbicide. Our results emphasize the variability in the extent and modes of SM and BUT dissipation in agricultural soils, and in associated changes in bacterial communities.


Assuntos
Herbicidas/análise , Poluentes do Solo/análise , Acetamidas , Acetanilidas , Biodegradação Ambiental , RNA Ribossômico 16S , Solo , Microbiologia do Solo
2.
Chemosphere ; 363: 142981, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089341

RESUMO

The quantification of pesticide dissipation in agricultural soil is challenging. In this study, we investigated atrazine biodegradation in both liquid and soil experiments bioaugmented with distinct atrazine-degrading bacterial isolates. This was achieved by combining 14C-mineralisation assays and compound-specific isotope analysis of atrazine. In liquid experiments, the three bacterial isolates mineralised over 40% of atrazine, demonstrating their potential for extensive degradation. However, the kinetics of mineralisation and degradation varied among the isolates. Carbon stable isotope fractionation was similar for Pseudomonas isolates ADPT34 and ADP2T0, but slightly higher for Chelatobacter SR27. In soil experiments, atrazine primarily degraded into atrazine-desethyl, while atrazine-hydroxy was mainly observed in experiments with SR27. Atrazine mineralisation in soil by ADPT34 and SR27 exceeded 40%, whereas ADP2T0 exhibited a mineralisation rate of 10%. In experiments with ADPT34 and SR27, atrazine 14C-residues were predominantly found in the non-extractable fraction, whereas they accumulated in the extractable fraction in the experiment with ADP2T0. Compound-specific isotope analysis (CSIA) relies on changes of stable isotope ratios and holds potential to evaluate herbicide transformation in soil. CSIA of atrazine indicated atrazine biodegradation in water and solvent extractable soil fractions and varied between 29% and 52%, depending on the bacterial isolate. Despite atrazine degradation in both soil fractions, a significant portion of atrazine residues persisted, depending on the bacterial degrader, initial cell concentration, and mineralisation and degradation rates. Overall, our approach can aid in quantifying atrazine persistence and degradation in soil, and in optimizing bioaugmentation strategies for remediating soils contaminated with persistent herbicides.


Assuntos
Atrazina , Biodegradação Ambiental , Herbicidas , Microbiologia do Solo , Poluentes do Solo , Solo , Atrazina/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Herbicidas/metabolismo , Herbicidas/análise , Solo/química , Radioisótopos de Carbono , Cinética , Isótopos de Carbono , Bactérias/metabolismo , Pseudomonas/metabolismo
4.
Chemosphere ; 313: 137341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423721

RESUMO

Knowledge of the degradation extent and pathways of fungicides in the environment is scarce. Fungicides may have isomers with distinct fungal-control efficiency, toxicity and fate in the environment, requiring specific approaches to follow up the degradation of individual isomers. Here we examined the degradation of the widely used fungicide dimethomorph (DIM) in a vineyard catchment using ratios of carbon stable isotopes (δ13C) and E/Z isomer fractionation (IF(Z)). In a microcosm laboratory experiment, DIM degradation half-life in soil was 20 ± 3 days, and was associated with significant isomeric (ΔIF(Z) = +30%) and isotopic (Δδ13C up to 7‰) fractionation. This corresponds to an isomer enrichment factor of εIR = -54 ± 6%, suggesting isomer selectivity and similar carbon stable isotopic fractionation values of εDIM-(Z) = -1.6 ± 0.2‰ and εDIM-(E) = -1.5 ± 0.2‰. Isomeric and isotopic fractionation values were used to estimate DIM degradation in topsoil and transport in a vineyard catchment over two wine-growing seasons. DIM concentrations following DIM application were up to 3 µg g-1 in topsoil and 29 µg L-1 in runoff water at the catchment outlet. Accordingly, the IF(Z) and δ13C values of DIM in soil were similar to those observed in DIM commercial formulations. The gradual enrichments in DIM-(Z) and 13C of the residual DIM in soil indicated DIM biodegradation over time. DIM biodegradation estimated based on E/Z isomer and carbon stable isotope ratios in topsoil and runoff water ranged from 0% after DIM application up to 100% at the end of the wine-growing season. DIM biodegradation was overestimated compared to conventional approaches relying on DIM mass balance, field concentrations and half-lives. Altogether, our study highlights the usefulness of combining carbon stable isotopes, E/Z isomers and classical approaches to estimate fungicide degradation at the catchment scale, and uncovers difficulties in using laboratory-derived values in field studies.


Assuntos
Fungicidas Industriais , Fazendas , Fungicidas Industriais/análise , Isótopos de Carbono/análise , Solo , Fracionamento Químico , Biodegradação Ambiental , Água
5.
Sci Total Environ ; 741: 140437, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887001

RESUMO

Rainfall and runoff characteristics may influence off-site export of pesticides into downstream aquatic ecosystems. However, the relationship between rainfall characteristics and pesticide export from small headwater catchments remains elusive due to confounding factors including the application dose and timing and the variation of pesticide stocks in soil. Here we examined the impact of rainfall characteristics on the export of copper (Cu), zinc (Zn) and 12 legacy and currently used synthetic pesticides in surface runoff from a headwater vineyard catchment. Cluster analysis of rainfall intensity, depth and duration of 78 events revealed four distinct rainfall categories, i.e., Small, Long, Moderate and Intense (p < 0.001). Event mean concentrations of pesticides did not differ among rainfall categories (p > 0.05). In contrast, event loads of both dissolved and solid-bound Cu and Zn significantly differed among rainfall categories (p < 0.001). Rainfall depth and intensity significantly correlated with both Cu and Zn loads in runoff (ρs = 0.33 to 0.92, p < 0.002), and might be the main drivers of Cu and Zn export at the catchment scale. In contrast, rainfall depth, intensity or duration did not influence the loads of synthetic pesticides in runoff, even when weekly variations of pesticide stocks in the soil were accounted for. However, intense rainfall-runoff events, that can fragment soil, may control the export of persistent and hydrophobic legacy pesticides stocks in the soil, such as simazine and tetraconazole. Our results show that rainfall characteristics controlled the off-site export of Cu, Zn and legacy synthetic pesticides in a small headwater catchment, whereas the application timing drove the export of currently used synthetic pesticides in runoff. We anticipate our results to be a preliminary step to forecast the influence of regional rainfall patterns on the export of both metallic and synthetic pesticides by surface runoff from small agricultural headwater catchments.

6.
J Hazard Mater ; 353: 99-107, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29649698

RESUMO

Chiral pesticides are often degraded enantioselectively in soils, leading to disparity among enantiomers that may display different toxicity levels. Monitoring pesticide degradation extents and processes remains out of reach in the field using conventional bulk and enantiomer concentration analyses. Enantioselective stable carbon isotope analysis (ESIA) combines compound specific isotope analysis (CSIA) and enantioselective analysis, and bears potential to distinguish enantiomer degradation from non-destructive dissipation. We developed ESIA of the fungicide Metalaxyl, providing the 13C/12C ratios for S-Metalaxyl and R-Metalaxyl separately, and applied it to follow degradation in soil incubation experiments. Significant enantioselective degradation (kS-MTY = 0.007-0.011 day-1 < kR-MTY = 0.03-0.07 day-1) was associated with isotope fractionation (Δδ13CS-MTY ranging from 2 to 6‰). While R-Metalaxyl degradation was rapid (T1/2≈10 days), concomitant enrichment in heavy isotopes of the persistent S-Metalaxyl occurred after 200 days of incubation (εS-Metalaxyl ranging from -1.3 to -2.7‰). In contrast, initial racemic ratios and isotopic compositions were conserved in abiotic experiments, which indicates the predominance of microbial degradation in soils. Degradation products analysis and apparent kinetic isotope effect (AKIE) suggested hydroxylation as a major enantioselective degradation pathway in our soils. Altogether, our study underscores the potential of ESIA to evaluate the degradation extent and mechanisms of chiral micropollutants in soils.


Assuntos
Alanina/análogos & derivados , Isótopos de Carbono/análise , Fungicidas Industriais/metabolismo , Poluentes do Solo/metabolismo , Alanina/química , Alanina/metabolismo , Biodegradação Ambiental , Fungicidas Industriais/química , Poluentes do Solo/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA