Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(30): 10189-95, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19572658

RESUMO

Migration of surfactants in water-based, pressure-sensitive adhesive (PSA) films exposed to static and cyclic relative humidity conditions was investigated using confocal Raman microscopy (CRM) and atomic force microscopy (AFM). Studied PSA films contain monomers n-butyl acrylate, vinyl acetate, and methacrylic acid and an equal mass mixture of anionic and nonionic nonylphenol ethoxylate emulsifiers. A leveling of surfactant concentration distributions is observed via CRM after films stored at 50% relative humidity (RH) are exposed to a 100% RH for an extended time period, while relatively small increases in surface enrichment occur when films are stored at 0% RH. Use of CRM for binary mixtures containing anionic or nonionic surfactant and latex that has undergone dialysis to remove nonpolymeric components indicates that surfactant-polymer compatibility governs to a great extent surface enrichment, but not changes observed with humidity variations. AFM images show that upon drying latex coatings, surfactant and other additives collect in large aggregation regions, which protrude from film surfaces. These structures are absent at high humidity, which appears to result from lateral spreading across the polymer surface. When humidity is reduced, aggregation regions reform but appear to be smaller and more evenly dispersed, and by cycling humidity between 0 and 100% RH, interfacial enrichment can be seen to diminish. Presented results provide greater insights into the distribution behavior of surfactants in latex films and potential mechanisms for observed issues arising for these systems.


Assuntos
Umidade , Látex/química , Tensoativos/química , Adesivos/química , Microscopia de Força Atômica , Movimento (Física) , Pressão , Propriedades de Superfície
2.
J Phys Chem B ; 112(38): 11907-14, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18767777

RESUMO

Surfactant distributions in model pressure-sensitive adhesive (PSA) films were investigated using atomic force microscopy (AFM) and confocal Raman microscopy (CRM). The PSAs are water-based acrylics synthesized with n-butyl acrylate, vinyl acetate, and methacrylic acid and two commercially available surfactants, disodium (nonylphenoxypolyethoxy)ethyl sulfosuccinate (anionic) and nonylphenoxypoly(ethyleneoxy) ethanol (nonionic). The ratio of these surfactants was varied, while the total surfactant content was held constant. AFM images demonstrate the tendency of anionic surfactant to accumulate at the film surfaces and retard latex particle coalescence. CRM, which was introduced here as a means of providing quantitative depth profiling of surfactant concentration in latex adhesive films, confirms that the anionic surfactant tends to migrate to the film interfaces. This is consistent with its greater water solubility, which causes it to be transported by convective flow during the film coalescence process. The behavior of the nonionic surfactant is consistent with its greater compatibility with the polymer, showing little enrichment at film interfaces and little lateral variability in concentration measurements made via CRM. Surfactant distributions near film interfaces determined via CRM are well fit by an exponential decay model, in which concentrations drop from their highs at interfaces to plateau values in the film bulk. It was observed that decay constants are larger at the film-air interface compared with those obtained at the film-substrate side indicating differences in the mechanism involved. In general, it is shown here that CRM acts as a powerful compliment to AFM in characterizing the distribution of surfactant species in PSA film formation.


Assuntos
Adesivos/química , Etilenoglicóis/química , Tensoativos/química , Água/química , Emulsificantes/química , Microscopia de Força Atômica , Microscopia Confocal , Pressão
3.
Langmuir ; 23(24): 12142-6, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17949113

RESUMO

A film composed of a thermal-stripped, solvent-borne acrylic polymer is shown to completely arrest motion of the three-phase line for water as a result of ridge structure formation. This mechanism produces anomalous wetting behavior including the arbitrary selection of contact angles, formation of quasi-periodic ridge structures on surfaces, and requirement of stick and break motion for wetting line advancement, a novel mechanism reported here. The ridges are retained by the polymer subsequent to wetting, which are 2 scales larger in height than those described previously. This allows for their characterization, which shows significant detail including the hierarchical apex structure where a cutoff area is used in theoretical treatment to avoid a singularity. Results of Wilhelmy plate experiments show a spatial connection between quasi-periodic variation in force-displacement curves and the wetting ridges on plate. These results are consistent with the dominance of the viscoelastic properties of the substrate in determining wetting behavior.


Assuntos
Resinas Acrílicas/química , Tensoativos/química , Água/química , Elasticidade , Processamento de Imagem Assistida por Computador , Óptica e Fotônica , Temperatura , Viscosidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA