Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(7): 744-766, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811801

RESUMO

The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).


Assuntos
Genômica , Análise de Célula Única , Análise de Célula Única/métodos , Genômica/métodos , Humanos , Biologia Computacional/métodos , Software , Animais
2.
Blood ; 140(22): 2358-2370, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984905

RESUMO

Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Ácido Retinoico/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genética
3.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34188164

RESUMO

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Assuntos
Transtorno Autístico , Neuropeptídeos , Animais , Transtorno Autístico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Prosencéfalo/metabolismo , Fatores de Transcrição/metabolismo
4.
BMC Biol ; 19(1): 19, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526011

RESUMO

BACKGROUND: Hematopoietic stem cells (HSCs) are the guarantor of the proper functioning of hematopoiesis due to their incredible diversity of potential. During aging, heterogeneity of HSCs changes, contributing to the deterioration of the immune system. In this study, we revisited mouse HSC compartment and its transcriptional plasticity during aging at unicellular scale. RESULTS: Through the analysis of 15,000 young and aged transcriptomes, we identified 15 groups of HSCs revealing rare and new specific HSC abilities that change with age. The implantation of new trajectories complemented with the analysis of transcription factor activities pointed consecutive states of HSC differentiation that were delayed by aging and explained the bias in differentiation of older HSCs. Moreover, reassigning cell cycle phases for each HSC clearly highlighted an imbalance of the cell cycle regulators of very immature aged HSCs that may contribute to their accumulation in an undifferentiated state. CONCLUSIONS: Our results establish a new reference map of HSC differentiation in young and aged mice and reveal a potential mechanism that delays the differentiation of aged HSCs and could promote the emergence of age-related hematologic diseases.


Assuntos
Envelhecimento , Ciclo Celular , Diferenciação Celular , Células-Tronco Hematopoéticas/fisiologia , RNA-Seq , Análise de Célula Única , Animais , Masculino , Camundongos
5.
Nucleic Acids Res ; 47(9): 4509-4520, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30892634

RESUMO

PLZF (promyelocytic leukemia zinc finger) is a transcription factor acting as a global regulator of hematopoietic commitment. PLZF displays an epigenetic specificity by recruiting chromatin-modifying factors but little is known about its role in remodeling chromatin of cells committed toward a given specific hematopoietic lineage. In murine myeloid progenitors, we decipher a new role for PLZF in restraining active genes and enhancers by targeting acetylated lysine 27 of Histone H3 (H3K27ac). Functional analyses reveal that active enhancers bound by PLZF are involved in biological processes related to metabolism and associated with hematopoietic aging. Comparing the epigenome of young and old myeloid progenitors, we reveal that H3K27ac variation at active enhancers is a hallmark of hematopoietic aging. Taken together, these data suggest that PLZF, associated with active enhancers, appears to restrain their activity as an epigenetic gatekeeper of hematopoietic aging.


Assuntos
Envelhecimento/genética , Células-Tronco Hematopoéticas/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Transcrição Gênica , Animais , Diferenciação Celular/genética , Elementos Facilitadores Genéticos , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Células Progenitoras Mieloides/metabolismo , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética
8.
Nat Commun ; 15(1): 872, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287014

RESUMO

Batch effects in single-cell RNA-seq data pose a significant challenge for comparative analyses across samples, individuals, and conditions. Although batch effect correction methods are routinely applied, data integration often leads to overcorrection and can result in the loss of biological variability. In this work we present STACAS, a batch correction method for scRNA-seq that leverages prior knowledge on cell types to preserve biological variability upon integration. Through an open-source benchmark, we show that semi-supervised STACAS outperforms state-of-the-art unsupervised methods, as well as supervised methods such as scANVI and scGen. STACAS scales well to large datasets and is robust to incomplete and imprecise input cell type labels, which are commonly encountered in real-life integration tasks. We argue that the incorporation of prior cell type information should be a common practice in single-cell data integration, and we provide a flexible framework for semi-supervised batch effect correction.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
9.
Comput Struct Biotechnol J ; 21: 21-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36514338

RESUMO

Hematopoietic stem cell (HSC) aging is a multifactorial event leading to changes in HSC properties and functions, which are intrinsically coordinated and affect the early hematopoiesis. To better understand the mechanisms and factors controlling these changes, we developed an original strategy to construct a Boolean model of HSC differentiation. Based on our previous scRNA-seq data, we exhaustively characterized active transcription modules or regulons along the differentiation trajectory and constructed an influence graph between 15 selected components involved in the dynamics of the process. Then we defined dynamical constraints between observed cellular states along the trajectory and using answer set programming with in silico perturbation analysis, we obtained a Boolean model explaining the early priming of HSCs. Finally, perturbations of the model based on age-related changes revealed important deregulations, such as the overactivation of Egr1 and Junb or the loss of Cebpa activation by Gata2. These new regulatory mechanisms were found to be relevant for the myeloid bias of aged HSC and explain the decreased transcriptional priming of HSCs to all mature cell types except megakaryocytes.

10.
Cells ; 11(19)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36231086

RESUMO

Single-cell transcriptomic technologies enable the uncovering and characterization of cellular heterogeneity and pave the way for studies aiming at understanding the origin and consequences of it. The hematopoietic system is in essence a very well adapted model system to benefit from this technological advance because it is characterized by different cellular states. Each cellular state, and its interconnection, may be defined by a specific location in the global transcriptional landscape sustained by a complex regulatory network. This transcriptomic signature is not fixed and evolved over time to give rise to less efficient hematopoietic stem cells (HSC), leading to a well-documented hematopoietic aging. Here, we review the advance of single-cell transcriptomic approaches for the understanding of HSC heterogeneity to grasp HSC deregulations upon aging. We also discuss the new bioinformatics tools developed for the analysis of the resulting large and complex datasets. Finally, since hematopoiesis is driven by fine-tuned and complex networks that must be interconnected to each other, we highlight how mathematical modeling is beneficial for doing such interconnection between multilayered information and to predict how HSC behave while aging.


Assuntos
Células-Tronco Hematopoéticas , Transcriptoma , Hematopoese/genética , Modelos Biológicos , Transcriptoma/genética
11.
Cell Rep ; 26(12): 3257-3271.e8, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893599

RESUMO

In the bone marrow, CXCL12 and IL-7 are essential for B cell differentiation, whereas hematopoietic stem cell (HSC) maintenance requires SCF and CXCL12. Peri-sinusoidal stromal (PSS) cells are the main source of IL-7, but their characterization as a pro-B cell niche remains limited. Here, we characterize pro-B cell supporting stromal cells and decipher the interaction network allowing pro-B cell retention. Preferential contacts are found between pro-B cells and PSS cells, which homogeneously express HSC and B cell niche genes. Furthermore, pro-B cells are frequently located in the vicinity of HSCs in the same niche. Using an interactome bioinformatics pipeline, we identify Nidogen-1 as essential for pro-B cell retention in the peri-sinusoidal niche as confirmed in Nidogen-1-/- mice. Finally, human pro-B cells and hematopoietic progenitors are observed close to similar IL-7+ stromal cells. Thus, a multispecific niche exists in mouse and human supporting both early progenitors and committed hematopoietic lineages.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Glicoproteínas de Membrana/imunologia , Células Precursoras de Linfócitos B/imunologia , Nicho de Células-Tronco/imunologia , Animais , Células-Tronco Hematopoéticas/citologia , Interleucina-7/genética , Interleucina-7/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células Precursoras de Linfócitos B/citologia , Células Estromais/citologia , Células Estromais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA